
MODEL-DRIVEN DESIGN OF SECURE HIGH ASSURANCE SYSTEMS:
AN INTRODUCTION TO THE OPEN PLATFORM FROM THE USER PERSPECTIVE

Steve Boßelmann and Johannes Neubauer and Stefan Naujokat and Bernhard Steffen

Chair of Programming Systems
TU Dortmund

{name.surname}@cs.tu-dortmund.de

ABSTRACT

We present DIME, an integrated solution for the rigorous
model-driven development of sophisticated web applications
based on the Dynamic Web Application (DyWA) Framework,
that is designed to flexibly integrate features such as high as-
surance and security. DIME provides a family of Graphical
Domain-Specific Languages (GDSL), each of which tailored
towards a specific aspect of typical web applications, includ-
ing persistent entities (i.e., a data model), data retrieval (i.e.,
search queries), business logic in form of various types of
process models, the structure of the user interface, and se-
curity. They are modeled on a high level of abstraction in a
simplicity-driven fashion that focuses on describing what ap-
plication is sought, instead of how the application is realized.
The choice of platform, programming language, and frame-
works is moved to the corresponding (full) code generator
which may be changed without touching the models leading
to high assurance systems.

1. INTRODUCTION

The DIME approach is a consequent refinement of the real-
ization of jABC4 [1] for process modeling and DyWA [2]
for data modeling empowering prototype-driven application
development. In the spirit of its predecessors DIME follows
OTA (One Thing Approach) [3] and XMDD (Extreme Model-
Driven Design) [4] and puts the application expert (a potential
non-programmer) in the center of the development process.
Hence, the different aspects of an application are described
with the most adequate form of model, respectively. All these
models are interdependently connected shaping the one thing
in a very formal yet easy to understand and use manner to the
extend that it can be one-click-generated to a running prod-
uct. DIME can be used to realize a wide range of web appli-
cations. We are just starting to explore its potential. Central
design goals on this journey are simplicity [5] and agility [6]
as well as security and quality assurance.

DIME enables user-level development of sophisticated
web applications. The user starts with the designs of various
graphical models that cover different aspects of the target

application. These models form the input for a subsequent
product generation step in which the full target application is
assembled from a variety of generated files that contain the
respective source code. The target of this product generation
is the DyWA framework that fosters the prototype-driven
web-application development throughout the whole applica-
tion life-cycle in a truly service-oriented manner [7]. In short,
modeling and code generation is done in DIME whereas
DyWA supports the product deployment phase, constitutes
the actual runtime environment and manages data persis-
tence. Furthermore DyWA explicitly enables and supports
continuous evolution, the sense of continuous model-driven
engineering [8], in a rigorous manner, which facilitates en-
suing iterations through the product re-design, re-generation
and re-deployment cycle.

The DIME approach provides the user with both an early
prototype of an up-and-running web application from the very
beginning of the development process as well as explicit sup-
port for product evolution due to the agile nature of version
management regarding data handling and persistency by the
DyWA framework. Altogether, the approach has the poten-
tial to tremendously push development cycles in an agile but
consistent manner which even comprises security aspects.

2. MODELING ENVIRONMENT

For the model design phase, DIME provides a family of
Graphical Domain-Specific Languages (GDSL), each of
which tailored towards a specific aspect of typical web appli-
cations. These span Data models for the design of domain
models, GUI models to specify the structure of (re-usable
components of) web pages as well as different types of Pro-
cess models, each of which tailored towards specific aspects
of a web application’s behavior. The apparent relations be-
tween each of these aspects is modeled by means of cross-
referencing to create hierarchical model structures. For this
purpose, DIME provides SIBs (Service Independent Building
Blocks) in terms of basic model components that link to ex-
isting models or to atomic components. SIBs are essential for
the effective realization of the omnipresent concept of model



Fig. 1. User interface of DIME with exemplary arrangement of views: (1) Project Explorer. (2) Diagram Editor with Palette.
(3) Data View. (4) Models View. (5) Properties View. (6) Model Validation View.

reuse.
The user interface of DIME has been specifically tailored

towards supporting the recurrent modeling steps, i.e. to pro-
vide guidance for the user by means of quick access to avail-
able model entities and relevant properties. The following
sections provide a short overview of the DIME user interface
as well as more details about available modeling languages
and the structural properties of the various models.

2.1. The DIME Application

DIME is a desktop application based on the Eclipse Rich
Client Platform (RCP), developed with the CINCO SCCE
Meta Tooling Suite [9] that facilitates the development
of domain-specific graphical modeling tools in a rigorous
model-driven fashion. As RCP application, DIME consists
of a set of plugins for the Eclipse framework that provide
support for effective model editing and specific views on
the current workspace. Models in DIME are foremost graph
models formed with nodes and (directed or undirected) edges
between them. The provided views take on this inherent
structure and provide dense overviews, quick access or other
kind of design-relevant information for the user. Fig.1 ex-
emplarily depicts an arrangement of these views constituting
the user interface of DIME. Apart from the generic Project
Explorer listing files in the workspace, each of the DIME-
specific views is shortly introduced in the following.

The Diagram Editor in the center of the DIME interface pro-
vides the canvas to draw the various graphical models on. Ad-
ditionally, it provides a palette with basic model components
that are specific for the type of the model that is currently
opened and shown in the editor.

The Data View lists data models in the current workspace. In
particular, data types and type attributes are enlisted in a tree-
based structure according to their inheritance hierarchy. Data
types can be dragged and dropped into special data contain-
ers of other models, in order to introduce variables for data
exchange between the model components.

The Models View provides the user with a dense overview of
available models in the current workspace. From this view,
a model can be dragged and dropped on the canvas in the
diagram editor iff the currently edited model supports cross-
references to models of that respective type. This action
triggers the creation of a new node inside the currently edited
model that holds a reference to the existing model in the
workspace. This is the essence of model reuse in the context
of DIME.

The Properties View provides access to attributes and param-
eters of nodes and edges inside the currently edited model.
This is where parameter values for these entities can be
changed by the user. Available attributes and parameters
differ depending on the type of the respective model compo-
nent.



The Model Validation View lists the results of syntactic and
semantic checks that are applied to the currently edited model.
These checks are specifically tailored towards the type of the
respective model and dynamically evaluated at model design
time. It provides guidance for the user and facilitates correct-
ness of the model, by listing warnings and errors with respect
to the affected entity or model substructure. Model valida-
tion in DIME spans various aspects comprising, for instance,
the enforcement of unique names, the correct use of expres-
sion languages, identification of missing edges, and various
syntactical requirements.

2.2. Graphical Modeling Languages

Each model type in DIME is a well-defined graphical mod-
eling language that relies on nodes and edges as the basic
components of graph models, as well as containers that are
special nodes that again can contain other nodes. Graphical
modeling is done by means of drag-and-drop operations in in-
teraction with the canvas of the Diagram Editor. Basic model
components are dragged from the editor’s palette and dropped
on the canvas. This triggers the creation of a new node in the
current graph model representing an instance of the respective
component.

Existing nodes may be connected via edges in a drag-and-
drop manner, i.e. clicking on the source node and dragging
an intermediate line to the target node. If multiple edge types
are suitable for connecting the respective nodes, a selection
dialog is shown for the user to select the desired type.

Due to limited space of this article, the syntax and the
semantics of the DIME’s various model types cannot be de-
scribed in every detail. In the following the most important
concepts in this context are introduced.

Service Independent Building Blocks (SIB) are basic model
components in DIME that are essential for the effective real-
ization of the omnipresent concept of model reuse by means
of cross-referencing and - as a special case of that - the
creation of hierarchical model structures [10]. In essence,
SIBs either provide a link to an existing model or to an
atomic model component. Atomic in this context means that
the component is self-contained and integrated in a service-
oriented fashion and not based on models within the current
workspace.

The modeling operation to create SIBs as nodes in the
currently edited graph model is done by means of drag-and-
drop operations in interaction with the canvas of the Diagram
Editor. It is basically the same operation as described in the
context of basic model components, but the respective model
is dragged from the Data View or Models View, depending on
its actual type. Dropping it on the canvas triggers the creation
of a SIB representing the respective model.

In the following the various model types are discussed
briefly.

Data models in DIME allow for the graphical design of do-
main models based on common data modeling concepts in
terms of classes and attributes as well as relations (inheritance
as well as uni- or bi-directional associations) between them.
The structure of Data models reflects the data structures that
are manageable by DyWA, as the latter maintains data objects
and provides support for persistence at runtime.

GUI models are used to specify the structure of (re-usable
components of) web pages that make up the user interface
of the target web application. Hence the structure of GUI
models reflects the structure of web pages in order to enable
user interface design in a familiar manner.

Process models in DIME allow for the graphical definition
of the business logic of the target application. In particular,
in DIME exist different types of process models. Each of
them is tailored towards specific aspects of a web applica-
tion’s behavior. At design time, it depends on the actual types
of the involved models whether cross-references are allowed
and how they are handled. On the other hand, the syntax of
the different types of process models is nearly the same. The
common syntactical features are going to be explained in the
course of the discussion of process modeling in Sec. 3.

DAD model. The DyWA Application Descriptor (DAD)
model is used to specify the entities that are relevant for the
application runtime. A suitable configuration comprises the
declaration of relevant domain models, an interaction process
that provides the landing page for the target web application
and an optional startup process to be invoked when the appli-
cation is started. This configuration is the entry point for the
product generation phase in which source code of the target
web application is generated.

3. PROCESS MODELING

Process models in DIME comprise both, a control flow aspect
as well as a data flow aspect. In the following the main design
concepts regarding each of these aspects are described. In this
context, we provide figures that contain models of an ongo-
ing exemplary TODO-app application that basically manages
lists of TODO entries for its users. The interested reader may
find further information as well as a detailed tutorial on the
DIME website1.

3.1. Control Flow

Process models contain a single start node and might have
multiple end nodes. In between, the control flow is modeled
by means of connecting multiple SIBs via directed control
flow edges. In this context, SIBs can not only hold references
to other Process models (i.e., Process SIBs) but also to GUI
models (i.e., GUI SIBs). While integrating Process SIBs fos-
ters model reuse by means of sub-processes, integrating GUI

1http://dime.scce.info



E?

Fig. 2. Process model GetTODOLists

SIBs into a process expresses that at runtime throughout the
execution of this process an interaction with the user of the
application has to take place. In both cases, the subsequent
control flow might depend on the actual outcome, be it an ex-
ecution result of the sub-process or eventual input provided by
the user, respectively. In order to reflect this at model design
time, the concept of Branches is introduced.

SIBs as components of Process models consist of a node
and multiple such Branches. While the node represents the
actual activity to be executed, each Branch represents one
possible outcome of this execution. In particular, the con-
trol flow follows only one Branch of a SIB at a time. As an
example, Fig. 2 shows a Process model that contains a SIB
labeled Switch Role with three Branches represented by out-
going edges labeled User, Admin and PowerUser. While in
this example the SIB represents an activity that identifies the
actual role of the current user of the application, its Branches
cover all possible cases. It is also apparent from Fig. 2 that the
subsequent control flow depends on the actual Branch taken
at runtime. For GUI models each user interaction with the re-
spective web page is interpreted as a branch, e.g., clicking a
submit-button in a form or following a hyperlink to another
page. As an example, the GUI model depicted at the top
of Fig. 5 is integrated into the Process model AppHome in
Fig. 3 by means of a GUI SIB represented by the node la-
beled Home. Consequently, the button of the form depicted
in Fig. 5 bottom is mapped on the single Branch Add TODO
of the GUI SIB.

As different outcomes of a SIB might convey different
provided data, there is also a data flow aspect in the context
of Branches to be discussed.

Fig. 3. Process model AppHome

E?

Fig. 4. Security Process model AdminOrOwner



3.2. Data Flow

Data flow in the context of Process models too is modeled in
a graphical manner. For this purpose, the concepts of ports as
well as the data context are introduced.

For modeling access to the runtime context of the applica-
tion, Process models provide a specific DATA container that
holds data nodes representing instances of data types specified
in Data models. In the following, this container is referred
to as data context of the Process model. In order to enable
modeling of the actual data flow, SIBs in the context of Pro-
cess models can have so-called Input Ports while Branches
in turn can have Output Ports. In Fig 2, each of the suc-
cess-Branches of the retrieval activities Retrieve owned and
Retrieve all have one Output Port representing the retrieved
TODO lists. Connecting any of these ports with the data node
result in the data context via a data flow edge expresses that
at runtime the represented data object is provided by the Out-
put Port of the respective Branch. As both the data output
of the Branches as well as the data object in the data context
are typed as [TODOList] (i.e. a list of TODOList objects)
the data flow edge is valid. In turn, invalid data flow edges
are recognized and prevented by the DIME framework. Ad-
ditionally, Fig. 2 shows how the data object represented by
the result node is provided as data for the Input Port todoLists
of the end node success of the Process model via a data flow
edge. Altogether, the process depicted in Fig. 2 describes the
activity of retrieving the TODO lists owned by the current ap-
plication user, or all TODO lists from a database in case that
this user has a role with special privileges.

If Process models are integrated into another model by
means of a Process SIB, each of its end nodes is mapped
to a separate Branch of this Process SIB. Furthermore, each
Branch of the Process SIB would have an Output Port for each
Input Port of the corresponding end node. As an example,
Fig. 3 shows the Process model GetTODOLists as shown in
Fig. 2 integrated into the Process model AppHome by means
of a Process SIB labeled Get TODO Lists in the figure. Note
that this Process SIB has a Branch success according to the
end node of the Process model in Fig. 2 and this Branch has
an Output Port todoLists related to the Input Port of the re-
spective end node with the same name.

Though not depicted in this figure, the same concept
applies for Output Ports of start nodes in relation to Input
Ports of corresponding Process SIBs. These are referred to as
model parameters. The overall approach is directly related to
the concept of formal and actual parameters of functions in
programming languages.

In the context of GUI SIBs, data objects in the cor-
responding GUI model are related to Output Ports of the
SIBs’ Branches. As an example, the data objects connected
via edges labeled Submit to the button at the bottom of
Fig. 5 match the Output Ports of the corresponding Branch
Add TODO of the GUI SIB in Fig. 3

3.3. Security Guards

Security guards are a concept in DIME to restrict access to
models based on a special type of Process models named
Guard Process. The task of a Guard Process is to decide
upon whether the current user of the target application fulfils
specific criteria in relation to the respective input of the pro-
cess. Hence, models of this type follow a predefined structure
that requires two end nodes granted and denied, as well as
a model parameter named currentUser with respective user
type. Fig. 4 shows an example of a Guard Process that re-
alizes the decision upon whether the current user is admin
or owner of a TODO list specified as model parameter. The
depicted process in particular follows the structural require-
ments introduced above.

This Guard Process can be used to decide whether the cur-
rent user is allowed to manipulate a specifc TODO list. Fig. 3
depicts its integration into the AppHome process. It is used to
restrict the manipulation of a TODO list by means of adding
new TODO entries. The Process SIB AddTODO is contained
in a so-called Guard Container together with the Guard Pro-
cess AdminOrOwner to express that the execution of the first
needs to be guarded by the latter. The underlying security
concept is discussed in the following section.

4. SECURE HIGH ASSURANCE SYSTEMS

There are two different views from which we consider the se-
curity and assurance aspects of applications built with DIME:
model level and platform level.

4.1. Model Level

We follow a thorough modeling approach with DIME. Its
interdependent models of various types are each tailored to
the different aspects of a web application. Altogether they
build one coherent specification with all the necessary infor-
mation to generate a fully operational web application in a
service-oriented way on any platform chosen arbitrarily from
the set of adequate frameworks. Since we obtain a coher-
ent description of our application, the barriers between the
layers of an implementation of such an application diminish.
Like in aspect-oriented programming we are able to describe
a property of our application only once and the analysis dur-
ing code-generation ensures that this property holds for all
layers, beginning with the JavaScript code in the browser,
reaching to the business logic and persistence layer in an ap-
plication server.

This way, error-prone replication of check code to all the
layers becomes unnecessary. Therefore, we gain high assur-
ance that the system behaves as expected. In addition, this
approach can be permeated to dynamic access control rules
leading to secure systems. Of course, the generators may
have flaws, but on the one hand the generators can be reused
for many different applications, and therefore it is much more



Fig. 5. Hierarchical GUI models of the TODO-app

likely that these flaws are revealed than in a single manual im-
plementation. On the other hand, fixing such an issue can be
carried out to all applications built with DIME, just by gener-
ating the applications again.

Referring to the TODO-App example application in Fig. 3
the process AddTODO is secured with the guard process ad-
min or owner. This is the only place where this property has
to be set. The analysis during code generation can follow the
control flow back to the branch Add TODO of the GUI-SIB
Home, and then traverse the cross-references (see Fig. 5 top
to bottom) to the corresponding GUI model Add TODO GUI
(cf. Fig. 5 bottom). It may then generate a case differentia-
tion for the user interface, which will disable the elements of
the corresponding form (see red rectangle with label “Form”
in Fig. 5 bottom) or omit it completely, if the guard process

Fig. 6. Variants of server-side encryption via a dedicated
hardware device.

evaluates to denied for the respective TODO-list. Since the
TODO-Lists are rendered in a FOR-loop (cf. Fig. 5 top), a
backend service can be generated, that evaluates the guard
process admin or owner for the TODO-lists to be shown all at
once and returns which may be edited and which not. Further
on, the guard process will be called each time before the pro-
cess Add TODO is executed and the TODO is added only, if
the guard evaluates to granted. This means, even if someone
calls the process directly it is assured, that the access control
rules are satisfied.

4.2. Platform Level

Classical client-server architectures often use server-side en-
cryption of content. This may be supported by a hardware
device as shown in Fig. 6 a) or done completely in software.
Supporting such a solution with high assurance entails the
need for some expertise in cryptography in the development
team and for each new application there is the potential to
make mistakes. Using a generative approach can lower this
risk and reduce the responsibility of a development team.

Since the DIME approach is service-oriented, not ev-
erything is generated down to the last statement. Instead, a
base system (i.e., DyWA) is used, which is a manually im-
plemented full-fledged web application right from the start.
Only the data structures, business logic (including access
control), and the structure of the user interface are generated
on top of modern technologies like Angular 22 and Java EE3.
The modeling level is completely independent from the envi-
ronment it is generated to. Hence, it is very easy to integrate
support for cryptography on the server side and reuse this for
every DIME application.

Furthermore, in the last years the interest to protect con-
tent against the provider of a service has grown tremendously.
For sure, several uncoverings of data privacy violations, by
employees of providers, hackers, and even governments con-
tributed to this trend. Several cloud services and instant mes-
saging services therefore introduce end-to-end encryption, so
that the provider will not be able to access the data – as it
would be the case with server-side encryption – neither will-
ingly nor under pressure, even, if it is stored on their servers.

End-to-end encryption has a weak spot: the client. This

2https://angular.io
3https://www.oracle.com/java/technologies/java-ee.html



can be both the user in front of a device who in general is
not an expert in cryptography and the device itself. There are
several approaches to increase trustability of devices on the
software level [11, 12] as well as on the hardware level [13],
leading to architectures as shown in Fig. 6 b).

Securing web applications with a desktop client via end-
to-end encryption is already challenging, but using hardware-
supported encryption in a web application in combination
with a browser client is even harder. This is ironically due
to limitations of JavaScript that have been introduced for se-
curity reasons in the first place. The JavaScript interpreter
lives in a so-called sandbox and is not allowed to (freely)
access devices on the local machine like the file system or the
hardware security device.

Since we describe only what an application is sought to
do, we can transparently add a web service to our setup (see
Fig. 6 c)) running on the local machine, which is able to en-
crypt and decrypt arbitrary content using a hardware device
like the SEcube [14] and thereby guaranteeing end-to-end en-
cryption of web applications. The code generator then adds
(JavaScript) code to the browser client calling this web ser-
vice to encrypt the content (e.g., the title and description of a
TODO entry) before it is sent to the server and to decrypt it
before it is presented in the web page to the user. This way,
the sandbox limitations are circumvented in a clean and sim-
ple way.

The server stores the encrypted content in the database
and returns it on demand. There is no need that the server
is aware of the encryption. In more complex scenarios with
multiple receivers, e.g. a shared TODO-list, a protocol for the
exchange of the respective public keys needs to be generated
into the application in advance.

The setup of the service and the hardware device can be
integrated into the authentication process of the web applica-
tion. The service itself can be shipped as an executable on
a mass storage device integrated into the security hardware,
digitally signed with the private key in the hardware itself.
The complete communication between the JavaScript client
in the browser and both the local encryption service and the
server side of the web application will be secured via HTTPS
to prevent man-in-the-middle attacks for getting one’s hand
on the meta data which cannot be end-to-end encrypted, since
the server needs to be able to process it. This way, the security
of a DIME application can be increased even when accessed
from public computers (e.g., in an internet cafe).

5. SUMMARY AND OUTLOOK

We have presented DIME, an integrated solution for the
rigorous model-driven development of sophisticated web ap-
plications that is designed to flexibly integrate features such
as high assurance and security via a family of Graphical
Domain-Specific Languages (GDSL), each of which tailored
towards a specific aspect of typical web applications, in-

cluding persistent entities, data retrieval, business logic, the
structure of the user interface, dynamic access control, and se-
curity. DIME’s simplicity-driven modeling approach makes
the choice of platform, programming language, and (security)
frameworks transparent, by moving them to the underlying
(full) code generator which may be changed without touching
the models.

6. LITERATURE

[1] Bernhard Steffen et al. “Model-Driven Development with
the jABC”. In: HVC 2006, Haifa, Israel. Vol. 4383. LNCS.
Springer, 2007, pp. 92–108.

[2] Johannes Neubauer et al. “Prototype-Driven Development
of Web Applications with DyWA”. In: Proc. of 6th ISoLA.
LNCS 8802. Springer, 2014, pp. 56–72.

[3] Tiziana Margaria and Bernhard Steffen. “Business Process
Modelling in the jABC: The One-Thing-Approach”. In:
Handbook of Research on Business Process Modeling. IGI
Global, 2009.

[4] Tiziana Margaria and Bernhard Steffen. “Service-
Orientation: Conquering Complexity with XMDD”. In:
Conquering Complexity. Springer, 2012, pp. 217–236.

[5] Maik Merten and Bernhard Steffen. “Simplicity driven appli-
cation development”. In: Journal of Integrated Design and
Process Science (SDPS) 16 (2013).

[6] Tiziana Margaria and Bernhard Steffen. “Simplicity as a
Driver for Agile Innovation”. In: IEEE Computer 43.6
(2010), pp. 90–92.

[7] Tiziana Margaria, Bernhard Steffen, and Manfred Reiten-
spieß. “Service-Oriented Design: The Roots”. In: Proc. of 3rd
ICSOC. Vol. 3826. LNCS. Springer, 2005, pp. 450–464.

[8] Tiziana Margaria and Bernhard Steffen. “Continuous Model-
Driven Engineering”. In: IEEE Computer 42.10 (2009),
pp. 106–109.

[9] Stefan Naujokat et al. “CINCO: A Simplicity-Driven Ap-
proach to Full Generation of Domain-Specific Graphical
Modeling Tools”. To appear in STTT (2016).

[10] Bernhard Steffen et al. “Hierarchical Service Definition”. In:
Annual Review of COMMUN ACM 51 (1997), pp. 847–856.

[11] Giorgio Di Natale et al. “Model driven design of crypto prim-
itives and processes”. In: This volume. 2016.

[12] Roberto Baldoni and Luca Montanari. “Italian National Cy-
ber Security Framework”. In: This volume. 2016.

[13] Antonio Varriale et al. “SEcubeTM : Data at Rest & Data in
Motion protection”. In: This volume. 2016.

[14] Antonio Varriale et al. “SEcubeTM : An open security plat-
form: General Approach and Strategies”. In: This volume.
2016.


