
SEcube™: Data at Rest and Data in Motion Protection

Antonio VARRIALE 1, Paolo PRINETTO 2, Alberto CARELLI 2, Pascal TROTTA 3
1Blu5 Labs Ltd, Blu5 Group, Ta Xbiex, Malta

2Cyber Security National Lab, CINI & Politecnico di Torino, Italy
3Lero (The Irish Software Research Center), University of Limerick, Limerick, Ireland

Abstract – Current trends for ubiquitous data usage have
made information security as a mandatory component of any
system. The availability of suitable levels of protection for
data is required to secure any kind of content throughout its
lifecycle and independently from the media, which allows the
data to be used. In this paper we present a methodology to
provide data protection through a simple and effective
security abstraction layer based on the SEcube™ (Secure
Environment cube) single chip, a new security-oriented open
hardware and software platform. After analyzing the most
critical information states, we introduce a set of easy-to-use
APIs that provide an open-source, multi-paradigm security
layer, suitable to protect both data at rest and data in motion.
Being the SEcube™ made up of three hardware elements (a
highly powerful processor, a Common Criteria certified
smartcard and a flexible FPGA), all the functions are
implemented and executed in a fully controlled secure
environment. All the complexities related to key management
and algorithms are handled within the secure environment,
leaving the developers free to focus on the final applications
and services.

Keywords: Security, Data Protection, Hardware Platforms,
Open-Source

1 Introduction
 Information and data exposure during its entire lifecycle
is growing continuously. The constant increase of
connectivity, bandwidth, and mobility allows hackers and
malicious users from inside and outside organizations to steal
and monetize valuable information such as medical records,
intellectual properties, bank transactions, and national secrets.

 Security is critical, but comes at a cost. Such cost is not
to be seen just as a money matter, but as the effort required to
integrate security into suitable vertical solutions and the
additional time and effort spent by the users to learn and
implement the new processes. In this paper we propose a
solution aimed to reduce these three aspects to a minimum.
The acquisition cost is lowered by resorting to the SEcube™
integrated platform; the integration cost is drastically reduced

by a low-impact deployment of a layered security technology,
and the complexity of security processes in daily tasks is
conceived by an abstraction level which guarantees that user’s
habits remain unchanged.

 Information lifecycle is conveyed through various
technologies, each having one (or more) dedicated security
solution(s). Some examples are HTTPS for web surfing,
S/MIME for e-mailing, VPN for private networking, and
many encryption software solutions for HDD storage.

 In such a heterogeneous universe of technologies, this
paper introduces a new methodology. More abstractly, we
distinguish information as being, at any time, either at rest or
in motion and we provide for each a solution that is
independent from the underlying technologies: SEfile protects
data at rest and SElink protects data in motion.

 These solutions, based on the SE (Secure Environment)
technology, are implemented according to a common strategy
that eases the above-mentioned costs [2].

 In order to minimize the actual cost of the product, a
multi-paradigm approach is provided. The clients can tailor
the solution according to their needs, from a full standard and
software-only implementation to a fully customized hardware
implementation, from open-source to commercial IPs.

 Organizations can adopt the SE based solutions on top
of all the pre-existing data storage, management and
manipulation systems, such as clouds, e-mails and web based
services. SE-based implementations are portable, independent
of the Operating Systems and multi-level. How to do this in
the software and hardware development platform is detailed
in [3] and [4].

 Finally, the cryptography complexity is concealed by
common abstractions like groups, scopes and policies, in such
a way that even the concept of encryption key is invisible [4,
5]. This approach allows users to enjoy security with no
impact on their current habits.

 The following sections will explain the main features of
these solutions.

2 Data at rest and data in motion
 Before Internet and the wideband mobile connectivity
diffusion, the information lifecycle was much more
controlled. Nowadays, as shown in Fig. 1, every piece of data
may run complex and unpredictable paths from its creation to
its final archiving or destruction.

Fig. 1 – Information life cycle

 In this scenario several kinds of contents (e.g.,
documents, messages, and voice/video streams) may require
different protection techniques according to their state. For
example, cryptography was created to protect
communications defined as the transfer of sensitive
information between two or more separate entities. This is the
case of data in motion. However, when information is static,
as for stored documents, we talk about data at rest.

 Cryptography alone is not enough to guarantee a proper
data protection, especially when the system weakness may
vary according to the information state. It is important to
identify a scalable and easy to use methodology able to
protect both data at rest and data in motion. In the sequel we
introduce such a methodology based on the SEcube™
security platform.

3 SEcube™ multi-device, multi-level,
multi-paradigm libraries

 The SEcube™ is an open source security-oriented
platform in a single chip package produced by Blu5 Group.
As described in [1] and [2], the SEcube™ chip provides
several communication interfaces, which allow to embed it in
any kind of device. In order to reduce the time to market,
Blu5 Group also provides ready-to-use devices such as the
USEcube, a powerful secure USB device which embeds the
SEcube™ chip. Even starting from the development board
(Fig. 2), OEMs and integrators can easily create diverse form-

factor devices according to the final operational environment
(e.g. USB tokens for PC/Laptop usage, PCI express boards
for servers usage, etc.).

Fig. 2 – SEcube™ development board

 On the software side, the SEcube™ platform comes
with multi-level, hierarchical libraries, which provide three
main levels of APIs:

• Level-0, Communication functionalities (e.g., driver-less
USB communication channel) explained in [1]

• Level-1, Security common functionalities (e.g., login,
logout, key inject/remove, basic cryptographic functions,
etc.) explained in [1]

• Level-2, Service level functionalities (e.g., secure file
system functions, negotiation) explained in the next
sections.

 Due to the open source nature of the project,
cryptographic experts are free to modify the software
implementations at any level, creating new libraries to their
taste. A shown in Fig. 3, each functionality can be
implemented in several paradigms according to the required
security, performances, and compliance targets.

Fig. 3 – Multi-paradigm implementation diagram

 For example, the basic cryptographic functions can be
easily implemented as a firmware running in the SEcube™
embedded CPU. Nevertheless, an implementation based on
the SEcube™ embedded FPGA can be considered when the
performances in terms of speed are crucial. Alternatively, the
use of the SEcube™ embedded smart card becomes
mandatory when the final solution has to achieve specific
certifications and compliances.

 A software implementation is sometimes enough to
guarantee the required security comfort. In this case a full
software implementation of the SEcube™ (virtual SEcube™)
can be used instead of the chip. In any case, whatever the
final implementation is, the SEcube™ libraries are written in
ANSI C in order to maximize their portability. Possible
Operating System dependencies are isolated in a few modules
and the whole code can be wrapped (e.g., JNI, PHP,
JavaScript, etc.) to fit any development environment.

 Providing a multi-device, multi-level, multi-paradigm
approach, the SEcube™ platform is a flexible candidate to
deploy security solutions in several scenarios, perfectly
matching the final requirements even in complex and
heterogeneous systems.

4 SEcube™ easy keys management
 A security system becomes appealing when both
developers and users are not aware of its complexity. For this
purpose, the SEcube™ platform is based on concepts like
closed communication groups and security policies other than
keys and cryptographic parameters.

 In both data at rest and data in motion based
applications and services (e.g., local storage, cloud, email,
messaging and voice calls) the sensitive information should
be accessed and managed by a specific group of users, only.
In the simplest case, the group is made up of one user (e.g.,
myself, for personal purposes). In other cases, many people
can be involved (e.g., file transfer and chat rooms).

Fig. 4 – Groups and Keys

 A group is a pool of one or many users. It is featured by
a group communication key, which will be used to generate
session communication keys for that group, and a set of
security policies (e.g., cryptographic algorithm used to protect
the information related to that group and mechanism to
generate the session keys) which will be used to decide if the
users are entitled to belong to that group.

 As shown in Fig. 4, Group A is made up of three users
(User 1, User 2, and User 4) whilst Group B is made up of
four users (User 1, User 2, User 3 and User 5). The groups are
usually created by a security administrator (managed groups).
Nevertheless, groups can also be created manually by the
users (manual groups), according to the specific organization
security policies. In both cases the security architecture is the
same.

 Whenever a group is created, a group communication
key is automatically generated by the SEcube™ and every
user receives all the communication keys related to the groups
which it belongs to. The SEcube™ platform provides APIs
for the secure distribution of group keys to the entitled users.

 Referring to Fig. 4, it is easy to understand that two or
more users can access the information only if they share at
least one group communication key. For example, User 1 and
User 3 can access the same information, since they belong the
same group (Group B) and, accordingly, they share the same
key (Key B). When users share more than one key (they have
more than one group in common) the key related to the
smallest group is selected, since it is known by less users
(more secure). As detailed in paragraph 6, this mechanism is
part of the negotiation process, which is executed every time
a secure communication link is established.

 On the programming side, every group is identified by a
unique number (GroupID). Each SEcube™ can manage up to
256 communication groups. In addition, there are two special
groups: personal and family. The personal group is associated
to the user, which owns the SEcube™ based device. It is used
to manage personal, non-shareable information and its
GroupID is made up of all zeroes. The family group is
associated with all of the users inside an organization. It is
used to manage information which can be shared with
everybody and its GroupID is made up of all ones.

 This approach allows developers and users to focus on
the final secure service, since they are not required to be
familiar with keys and algorithms (e.g., kind of key, key size
and algorithm type). The cryptographic complexity is easily
and transparently managed by the SEcube™ platform
according to the security policies set at provisioning time by a
security administrator. On the other side, cryptographic
experts and developers are free to customize any part of the
system, thanks to the open source nature of the platform.

5 SEfile, the SEcube™ based Secure
File System

 Data at rest can be easily protected through the SEfile
technology, a Secure File System level-2 library which allows
standard applications to access standard file systems through
the SEcube™ cryptographic layer, performing file encryption,
signature, and name remapping.

 There are several technologies to protect file systems.
For example, the ORI File System [6] aims to provide a
security solution for distribute file systems, replicating
mechanisms like multi-user cloud like drop box and version
control like Git. Another example is the Secure File System
module [7], which is implemented at Linux kernel level to
encrypt any folder with encrypt prefix. All these solutions
depend on specific implementations (e.g. operating systems,
file systems, etc.) and sometimes are more focused on extra
functionalities (e.g. cloud, versioning, etc.) than security. For
these reasons they may be very invasive, forcing the users to
change their habits, and at the same time they are not so
portable. On the contrary the SEfile technology is
independent of the other layers (e.g. operating systems, file
systems, etc.). It can be easily integrated in any pre-existing
systems (e.g. drop box) and allows developers to create very
low-impact and portable security solutions focusing on the
content protection.

 As shown in Fig. 5, SEfile operates as a transparent
virtual layer on top of the regular file system, providing a set
of multi-paradigm, Level-2 APIs (SFS_Open, SFS_Read,
SFS_Write, SFS_Seek and SFS_Close). Since the SEfile is
implemented on the top of the standard file systems functions,
it is independent of the Operating System.

Fig. 5 – SEfile library concept

 Being open source, the SEcube™ implementation can
be verified or improved at any time. Nevertheless, the
developers that do not feel comfortable with cryptography, or
simply trust the open source community system validation,
can benefit from the security abstraction level, which
simplifies all the cryptographic mechanisms.

 For example, when a secure file is created through the
SFS_Open function, it is just required to specify the
protection scope: for me only (personal), for a group of two
or more (group), for everybody (family). When the protection
scope is a group, a group identifier must be provided as
described in section 4. By doing so, users and developers do
not need to deal with keys, algorithms and other low level
complex cryptographic features, which are transparently
managed inside the SEcube™.

 As shown in Fig. 6, a secure file is made up of many
encrypted and signed sectors. The first sector is partially
encrypted, since it contains the secure file header, which
includes some clear and coded fields (e.g. initial vector and
security scope). All other sectors are fully encrypted. Each
sector is 512 Bytes long in order to be read/written atomically
and prevent possible data corruption issues, especially on
mobile devices (e.g., low battery).

Fig. 6 – Secure File structure

 As shown in Fig. 7, when a secure file is created, the file
name is coded in a way that nobody can recognize it looking
directly at the physical file system. For example, the coded
file name can be calculated inside the SEcube™ by a one-way
digest function (e.g., SHA256) of the real file name in
combination with an SEcube™ common information (family
secret), whilst the real file name is encrypted in the secure file
header. In this case a folder containing secure files looks like:

…/B5B8D0F121F9596A…4BBC4829615B968EDA.se
…/B5A6135EF9B1783C…F981BC7AA9F541D93F.se
…/B5E93F7BC1DD18D…8AF3C6BA6135EF9B17.se

 According to the library paradigm, SEfile can be
provided with different implementations, such as hardware
cryptography (accelerated implementation on the embedded
FPGA), software cryptography (firmware implementation on
the embedded CPU), or extra features (multi-level secure
cache, anti reply attack, auto rescue, etc.).

Fig. 7 – Coded file name

 Beside some basic posix style APIs, the SEfile library
provides file management functions like SFS_GetFileList
(return the list of secure files in a specific folder showing
their real file names) and SFS_DeleteFile (delete a specific
secure file).

 The simple set of posix-like APIs makes SElink easy to
be integrated in third-party libraries or applications. As shown
in Fig. 8, an interesting library integration example is the
combination of SEfile and SQLite.

 SQLite offers a virtual file system interface to interact
with the underlying operating systems, thus integrating SEfile
it can be provided with a strong, fast and customizable
security layer to the host environment. This approach is very
efficient: it keeps the SQLite interface unaltered and no
changes are required at the application level.

Fig. 8 – SEfile and SQLite integration

 SEfile can be also combined with third-party solutions to
generate secure application and services. For example, SEfile
can be used in a Dropbox™ folder to deploy a zero-impact
secure cloud solution. In a similar way, SEfile may be used in
combination with an email client to store mails and
attachments. Although the same technology may be used to
send and receive files, the next section presents a more
effective and flexible library to protect data in motion.	

6 SElink, the SEcube™ based Secure
Link
Whenever an information item is transferred among

entities, the connection links offer an attractive opportunity
for attackers to catch sensitive contents.

There are many solutions which provide security for the
most standard communication channels, like TLS [8] for IP
based data transfers, Virtual Private Networks (VPNs), etc.
Nevertheless, all these solutions are implemented for specific
communication channels, sometimes they are complex, their
overhead is not acceptable and usually provide point-to-point
only security.

In line with our general approach, we propose a solution
which is very light, easy to be integrated in any environment
(over any protocol), open source, portable, multi-device and
multi-paradigm: SElink.

 The SElink technology allows protecting data in motion
on both point-to-point and point-to-multipoint links through
the SEcube™ cryptographic layers, which performs
negotiation, encryption, and signature operations. It is a
security layer running on top of any transport technology (e.g.
IP, TCP, HTTP/S, SMTP, XMMP, CoAP and custom
protocols) and featured with a very low overhead in order to
be fast and easily integrated.

 When two or more entities need to set up a secure
communication channel to exchange data, the SElink library
negotiates the session keys and performs encryption,
signature, decryption and verification operations on the
exchanged data.

 As shown in Fig. 9, in the first phase the SElink
performs a negotiation process checking the security policies
(e.g., methods and master keys to derive session
communication keys), agrees the common parameters (e.g.,
cryptographic algorithms, predefined communication groups/
keys, etc.) and derives the final session communication keys.
After performing a successful negotiation, the secure link is
ready for data transfer and the negotiated keys can be used to
encrypt, sign, verify, and decrypt the information.

Fig. 9 – SElink point-to-point example

 Negotiation can be duplex or simplex. The duplex
negotiation must be executed between two entities (peer-to-
peer) that will be co-responsible in generating the final
session communication keys. Other entities can join the link
at a later stage (peer-to-multi-peer) performing a simplex
negotiation, which requires a master entity, already in the
link, and one or more slave entities willing to join the link.
The master entity pushes negotiation parameters that allows
slave entities to generate the communication session keys
already negotiated. The generation is possible only if the
slaves are entitled to join the link (e.g., security policies
match and same communication group).

 The negotiation process is performed in two messages,
only. For example, in the case of HTTP/S links, the
negotiation is performed in one standard GET method.

SElink provides a small and easy way to use set of multi-
paradigm, Level-2 APIs to manages both binary data, suitable
for protocols like IP, and text based data, suitable for
protocols like HTTP. In order to simplify the integration on
stateless systems (e.g., web servers) SElink functions are
multi-sessions and the internal state can be saved outside the
SEcube™ platform in a secure (it is encrypted and signed)
and private (it can be reused by the originator SEcube™ only)
container automatically generated by the library. As shown in
Fig. 10, each entity is able to concurrently manage several
SElink channels. In this case, A and C work on two secure
links at the same time and three total sessions are negotiated:
A-D, A-C, and B-C.

Fig. 10 – SElink multi-session negotiation

 Similar to the SEfile technology, SElink can be easily
combined with third-party solutions to generate secure
application and services. For example, SElink can be used in
combination with XMPP based messaging applications in
order to protect text and attachments.

 The SElink stateless nature makes it suitable for
operations on two or many channels even when they are
related to the same service. For example, in case of VoIP
services, SElink can start the negotiation procedure on the
signaling channel. After successfully completing the process,
the communication stream (e.g., voice) can be encrypted,
signed, decrypted, and verified on the data channel, which is
logically (and sometime physically) different from the
signaling one.

7 Conclusions
 This paper introduced some of the SEcube™ platform
based methodologies to protect both data at rest and data in
motion, which covers any security services and solutions.

 It is possible to combine flexibility in the choices of
technology and in the level of security to be attained with a

well-organized and modular protection of data at rest and data
in motion. As described in [2] and detailed in [3] for the
software development platform, in [4] for the hardware and
cryptography, and in [5] for the knowledge management via
properties, also in security, the overall platform is developed
to be robust and versatile, espousing the principle of models
for encapsulation and model assembly for application
development.

 This approach delivers both the desired cost
containment and the change friendliness.

 Technologies like SEfile and SElink provide a flexible
security layer which can be deployed through several devices
(multi-device) according to the target environment. The
SEcube™ platform can be easily integrated in pre-existing
systems thanks to a simple set of APIs that provide several
entry points (multi-level). The internal implementation can be
tuned (multi-paradigm) in order to match requirements of
security, costs and user experience choosing among several
options: from a standard and software only implementation to
a full-custom hardware solution.

 In the previous sections we described how to manage
several use cases by means of the SEfile and SElink
technologies individually. Nevertheless, their combination is
even more effective, since it is possible to address complex
scenarios like remote machines and web based services,
providing a large protection layer against server, client and
communication side attacks.

 All the above features make the SEcube™, and its
associated abstraction layer and libraries, a unique security
platform, which provides a multi-level, multi-device, multi-
paradigm solution to realize high-grade security services and
applications minimizing the development effort and reducing
drastically the time-to-market to secure products.

8 Acknowledgment
 This work was supported, in part, by Science Foundation
Ireland grant 13/RC/2094 and co-funded under the European
Regional Development Fund through the Southern & Eastern
Regional Operational Programme to Lero - the Irish Software
Research Centre (www.lero.ie)

9 References
[1] A. Varriale, E. I. Vatajelu, G. Di Natale, P. Prinetto, P.
Trotta, and Tiziana Margaria, “SEcube: An Open-Source
Security Platform in a Single SoC,” Proc. 11th IEEE
International Conference on Design & Technology of
Integrated Systems in Nanoscale Era (DTIS 2016), April
2016, Istanbul, Turkey

[2] A. Varriale, G. Di Natale, P. Prinetto, B. Steffen, and T.
Margaria, “SEcubeTM: An open security platform: General
approach and strategies,” Proceedings of the International

Conference on Security and Management (SAM). The
Steering Committee of The World Congress in Computer
Science, Computer Engineering and Applied Computing
(WorldComp), July 2016, in press.

[3] S. Boßelmann, J. Neubauer, S. Naujokat, and B. Steffen,
“Model driven design of secure high assurance systems: an
introduction to the open platform from the user perspective,”
Proceedings of the International Conference on Security and
Management (SAM). The Steering Committee of The World
Congress in Computer Science, Computer Engineering and
Applied Computing (WorldComp), July 2016, in press.

[4] G. Di Natale, A. Carelli, P. Trotta, and T. Margaria,
“Model driven design of crypto primitives and processes,”
Proceedings of the International Conference on Security and
Management (SAM). The Steering Committee of The World
Congress in Computer Science, Computer Engineering and
Applied Computing (WorldComp), July 2016, in press.

[5] G. Airò Farulla, M. Indaco, A. Legay, and T. Margaria,
“Model driven design of secure properties for vision-based
applications: A case study,” Proceedings of the International
Conference on Security and Management (SAM). The
Steering Committee of The World Congress in Computer
Science, Computer Engineering and Applied Computing
(WorldComp), July 2016, in press.

[6] Ali Josè Mashtizadeh, Andrea Bittau, Yifeng Frank
Huang, David Mazières, Stanford University, Ori File System	
Web Site, http://ori.scs.stanford.edu/  

[7] Rajesh Kumar Pal, Indian Institute of Technology,
Secure File System Thesis 

[8] T. Dierks, E. Rescorla, Network Working Group, The
Transport Layer Security (TLS) Protocol Version 1.2,
https://tools.ietf.org/html/rfc5246

