
SEcube™: an Open Security Platform -
General Approach and Strategies

Antonio VARRIALE1, Giorgio DI NATALE2, Paolo PRINETTO3, Bernhard STEFFEN4, Tiziana MARGARIA5

1 Blu5 Labs Ltd, Blu5 Group, Ta Xbiex, Malta – av@blu5labs.eu

2 LIRMM, CNRS, Montpellier, France – giorgio.dinatale@lirmm.fr
3 CINI Cyber Security National Lab & Politecnico di Torino, Torino, Italy – paolo.prinetto@polito.it
4 Chair of Programming Systems, TU Dortmund, Dortmund, Germany – bernhard.steffen@tu-do.de

5 University of Limerick and Lero, The Irish Software Research Centre, Limerick, Ireland – tiziana.margaria@lero.ie

Abstract The SEcube™ (Secure Environment cube) platform
presented in this special track is an open source security-
oriented hardware and software platform constructed with
ease of integration and service-orientation in mind. Its
hardware component is a SoC platform: a single-chip design
embedding three main cores: a highly powerful processor, a
Common Criteria certified smartcard, and a flexible FPGA.
The software components include several libraries of ready-
to use components that provide developers with different
entry levels to adoption. The software is modular, and
available as API or as services in an advanced model driven
design environment. This way, security experts can avail of
the open source character, and verify, change, or write from
scratch the entire system, starting from the elementary low-
level blocks, but at the same time we support also developers
who use the predefined primitives and can experience the
SEcube™ as a high-security black box. This paper explains
its aims and architecture, while the other papers detail the
unique aspects of the overall platform.

Keywords — Security, Hardware Platform, Software
Development Environment, Model Driven Design, Open-
Source.

1 Introduction
Security is a key concern to any mission and business critical
service and application. Wherever there is data or proprietary
or personal content there is a need of mechanisms and
provisions in place to ensure adequate users’ privacy, prevent
and handle the commercial and legal issues related to security
threats, and to safeguard the business stakeholders.

The implementation of a suitable security layer usually
requires special skills in several disciplines, including
mathematics and cryptography. When the security target is
provided as a combination of hardware and software solutions
the system complexity increases and further skills are

required (i.e. electronics, physics, informatics) to manage the
integration and prevent all the possible attacks. At the same
time the security may have a big impact on pre-existing
systems and solutions, most of the times forcing the final
users to change their habits. All these aspects make the
security a very complex topic from the development stage to
the final usage.

In this paper and track we describe the architecture and the
main characteristics of the SEcube™ (Secure Environment
cube) platform, that is new in being consequently open and
service-oriented. It is easy to integrate and capable of hiding
significant complexity behind a set of simple and high-level
services, that are accessible as APIs, the lowest level being
the hardware itself. Also the hardware is open: its description
and technical details are completely available, including the
hardware netlist, the package, examples of schematics in
order to plug the chip into possible boards. The complete
software stack is open source as well, including libraries of
services at different abstraction level offering palettes of pre-
defined services, and the service APIs, up to the model driven
development environment itself, that that enables the easy
creation of new (secure) applications and products.

While the open platform concept is popular in the software
domain (think of Linux, Java, and its spread in software
development communities, like in bioinformatics), it is not
yet commonly adopted for hardware, especially for security
purposes, where the solutions are usually provided as a black
box sometimes coming with a certification and always closed
to any kind of disclosure or customizations.

There are a few security-oriented open platforms available on
the market. Some of them are focused on the evaluation of the
system robustness against external physical attacks (e.g.,
Side-Channel attacks, power crypto-analysis, etc.), such as
the Sasebo board [1] and the ChipWhisperer [2].

Other platforms based on ARM processors, like Juno ARM
Development Platform [3] and the open source USB device
provided by InversePath [4], allow creating general purpose
software applications, including security-oriented solutions.
Nevertheless, they are based on application processors and
there are not specific security elements to be fully controlled
or customized by the developers.

Finally, there are single chips realized as a combination of
one FPGA and one CPU, like Zynq proposed by Xilinx [5] or
Excalibur based on Altera technology [6]. Nevertheless, in
both the cases the platforms are more suitable at prototyping
stage, since they are not cost-efficient, and a specialized
security element, like a smart card, is still missing.

This paper describes in detail the SEcube™ hardware
(Section 2) and software (Section 3) architecture, gives a brief
introduction to the DIME environment that provides the
eXtreme Model Driven Development design and verification
capability (section 4), and concludes in Section 5 with an
introduction to the other papers of this track. They provide in-
depth descriptions of the security primitives and protocols,
the design environment, several case studies, a first glimpse
of how to deal in this overall context with property
verification and enforcement.

2 The SEcube™ Hardware Architecture
As shown in Fig. 1, the hardware device is a single chip,
which embeds three hardware components: a powerful CPU,
a flexible FPGA and an EAL5+ certified smart card. The
software library is developed as a free and open-source SDK,
provided with user documentation.

Internally, the SEcube™ device is a multi-module chip
integrated in a 9mm x 9mm BGA package. As shown in Fig.
2, it is a heterogeneous platform consisting of three elements.

The first element is a high-performance ARM Cortex M4
RISC CPU produced by ST Microelectronics [7]. It provides
the following features:

• 2 MBytes of Flash memory
• 256 KBytes of SRAM
• 32 bit parallelism
• operating at frequency of 180 MHz
• dedicated FPU (Floating Point unit)
• Internal TRNG (True Random Number Generator)
• Hardware Crypto Accelerator
• Low power consumption

 This CPU has been selected among many ARM based
micro-controllers, since it offers several features that make it
suitable for high-performance and security-oriented solutions.
For example, it supports the Cortex CMSIS implementation
that provides, among the others, the CMSIS-DSP libraries: a
collection with over 60 DSP functions for various data types.
The CMSIS-DSP library allows developers to implement

complex, real time operations using the embedded harware
floating point unit.

Fig. 1 The SEcube™ Chip

In addition, the CPU provides several peripherals such as SPI,
UART, USB2.0 and SD/MMC, which ease the hardware
integration in diverse devices. For example, a secure USB
device can be easily realized using the USB2.0 and the SD
card interfaces, respectively.

On the security side, a TRNG (True Random Noise
Generator) embedded unit, hardware mechanisms like MPU
(Memory Protection Unit), and privileged execution modes
allow implementing the security strategies required by a
certified secure controller (e.g., privileged memory areas, key
generation, etc.).

Fig. 2 SEcube Hardware Architecture

For programming, debug and testing operations, the CPU
provides a standard JTAG interface that can be permanently
disabled once the development cycle is over, protecting all
the sensitive information through a physical hardware lock.

The FPGA element, a Lattice MachXO2-7000 device [8], is
based on a fast, non-volatile logic array providing the
following main features:

• 7000 LUTs
• 240 Kbits embedded block RAM
• 256 Kbits user flash memory
• Ultra low-power device.

The FPGA exposes 47 general purpose I/O which may be
used as a 32-bit external bus able to transfer data at 3.2 Gb/s.
Inside the chip, it is linked to the CPU through a 16-bit
internal BUS, able to reach a data transfer rate of 1.4 Gb/s. A
CPU-FPGA clock line is also provided in order to simplify
the clock domains synchronization.

 In order to limit the number of pins and the BGA
package size, the FPGA JTAG is connected just to the
embedded CPU, which manages both the debug and the
programming operations. As a positive side effect, the FPGA
configuration can be implemented by means of customized,
high-security techniques. For example, the programming
stream can be encrypted and signed through dedicated
algorithms. The CPU and/or the smartcard elements can
decrypt and verify it before being injected in the FPGA.

The third component inside the SEcube™ device is an
EAL5+ certified smartcard [9], based on a secure chip
produced by Infineon that provides the following features:

• ISO7816 interface
• JavaCard Platform, Global Platform 2.2
• 128 KB Flash
• EC, ECDH up to 521 bit (HW accelerator)
• RSA up 4096 bit (HW accelerator)
• AES128/192/256 (HW accelerator).

 As shown in Fig. 2, the CPU is connected to the
embedded smartcard through a standard ISO7816 interface.
The smartcard does not expose any interface outside the
SEcube™ chip. This architectural decision provides high-
grade and certified security functionalities behind a simpler
and easy-to- use application interface.  

 Combined together, the above three components, allow
to build a heterogeneous computing architecture and create
the foundations to build a very flexible open source security
platform.

2 The SEcube™ Software Libraries
 The software side of the platform library consists of a
multi-level, open source, collection of libraries available as an
SDK [10, 11], together with a verification-oriented model
driven design environment (currently DIME [12]). The
libraries, especially if in conjunction with this design
environment, allow developers who are not willing or able to
produce the security primitives and protocols themselves to
exploit the ready functions provided (as services or API)
within the SEcube™ platform and experience the platform as
a high-security black box. Conversely, security experts in the
security domain can enjoy the openness and good

documentation to verify, change or rewrite the pre-existing
software starting from basic low-level blocks or even redefine
entirely the whole system.

 Leveraging the platform thought, we intend to create
and nurture over time a community for developers at the
different levels of security competence and in different
application domains. This will ease the project, knowledge,
and resource sharing and provide the collectivity of members
with specialized support tailored to their needs.

 From the architectural point of view, the software is
divided in two main parts, depending on where physically the
code runs: the Device-side relates to the SEcube™ based
hardware device (e.g. USB secure token), while the Host-side
relates to the appliance hosting the device (e.g. Laptop).

 In this scenario the SEcube™ hardware device acts as a
powerful coprocessor which provides a secure and fully
controlled execution environment. All the functionalities
implemented in the SEcube™ are thus exported to the host
system through an open source secure RCP (Remote Call
Procedure) protocol which is encapsulated in the SDK.

 Before describing all the functional details (section 4), a
general device and host side overview is given here.

2.1 Device-Side Software
 The device side, software provides the libraries of basic
functionalities that are executed on the embedded
microprocessor. According to their purposes, the libraries
cover three layers:

Functional Layer0. Closest to the device, software drivers
offer basic functionalities to manage and access internal
peripheral (e.g. TRNG, internal Flash memory, timers, etc),
external devices connected to the CPU, i.e., FPGA and Smart
Card, and the external communication interfaces as well (i.e.
USB, UART, SPI and GPIOs). This level, in particular, is
entitled to discover possible SEcube™ devices connected to
the host system and create a bidirectional communication
channel. These functionalities are exposed through a simple
set of APIs:

• L0_get_dev_list, which is in charge of
discovering connected SEcube based devices, and

• L0_tx_rx, which implements a low level send/receive
operation on the channel.

Functional Layer1. At the intermediate level, the core
functions constitute the basic primitives for implementing
secure applications. This layer provides basic cryptographic
algorithms and various utilities, like functions for power
management.

 In addition, it is used to secure the communication
channel after a successful login, which can be easily
implemented as a multi-factor authentication thanks to the
three hardware elements inside the chip and the password
provided by the user.

The Layer1 exposes several functions to manage both the
device provisioning and the user/admin operational processes:

• pin and primary keys initialization (e.g.,
L1_factory_init and L1_initLogin)

• login (e.g. L1_loginAdmin, L1_loginUser and
L1_changePinUser)

• logout (e.g. L1_logoutAdmin and
L1_logoutUser)

• information retrieval (e.g., L1_readDSN,
L1_getAlgorithms, and L1_getKeyList)

• encryption/decryption/signature verification (e.g.,
L1_crypto_init, L1_crypto_setIV,
L1_crypto_update and L1_crypto_finit)

• key management (e.g., L1_injectKey and
L1_deleteKey).

Functional Layer2. At a higher level, the security
abstraction layer allows developers to create secure software
and services for the applications (e.g., secure file system
[10]), avoiding the need to understand in detail the low-level
hardware and security mechanisms.

 When the security target does not require a hardware
implementation, the SEcube device can be virtualized by a
software library which provides all the layers above running
on the host.

2.2 Host-Side Software
 On the host side, the software is tailored for existing
devices (e.g., laptops or Desktop PC) that see the SEcube
hardware as an external peripheral and use it for the specific
functionalities offered, like cryptographic hardware
acceleration. For this communication, the SEcube device is
seen as a closed black box providing utility services. The host
starts the service request by sending the related command and
the optional data packets, through a proper interface,
according to a custom protocol.

 Also the host side code is open source. It is designed to
be both scalable, e.g., for dealing with multiple devices, and
portable on different operating systems, thus limiting the
usage of and isolating platform-dependent modules.

The host-side software runs on top of the host operating
system, and I structured in two main levels.

Layer0 implements the basic functionalities to communicate
with the SEcube, including (a) sending/receiving command
and data packets from/to the device, (b) segmentation of raw
data streams into protocol-compliant packets, (c) functions
implementing standard cryptographic algorithm and (d) low-
level error management functions. Moreover, commodities
functions are also provided, such as low-level data
manipulation in dealing with possible endianness mismatches
between the host side and the SEcube™ embedded CPUs.

 Host-side software relies directly on the Operating
System calls and it supports many OSs and platforms,

including Microsoft Windows, Unix-like environments, and
MacOS. To improve portability, OS-dependent sub-modules
(e.g., communication interface, file system, etc.) are easily
identifiable.

Layer1 is built over the Layer0 and provides a higher
abstraction library, like multi-factor login, secure
communication channel, cryptographic algorithms and key
management. As we see in Fig. 3, currently, the Layer 1
library includes 16 functions, of which 6 concern login/logout
(called log in the picture, which is their abstract type) 4 the
key management (key), 4 the cryptography (crypt) plus 2
utility functions (utils). These functions can be combined
to implement more complex security mechanisms at higher
level, as detailed in [12,] [13], and [14].

 The Layer1 also allows developers to manage several
SEcube™ devices at the same time, providing dedicated
operation control flows (one command/response session per
communication channel), which allow encoding and decoding
commands for the individual SEcube™ target.

 As shown in [10] and [11] and sketched in the next
section, the Layer 1 services are the basic building blocks for
developers to create complex and tailored security primitives.
As shown in [12] and [14], design of secure solutions based
on these services eases the understanding and reduces the
time to market drastically. The key to this speed and
increased confidence in the correctness and security of an
application is a model-driven design that includes these ready
but customizable security services and protocols already at
design time, on the models of any application. How the
DIME environment supports this is explained in the next
section.

3 Modeling Environment
 DIME (the DyWA Integrated Modeling Environment) is
an integrated solution for rigorous model-driven development
of sophisticated and high assurance web applications. They
are modeled in a simplicity-driven fashion that focuses on
describing what application is sought (descriptive), instead of
how the application is realized (prescriptive). Further design
goals are agility and security as well as quality assurance. It is
a consequent refinement of the realization of jABC4 (Java
Application Building Center 4, [15]) for process modeling
and DyWA (Dynamic Web Application [16]) for domain
modeling and data persistence. The application workflow
models in DIME are graph models: nodes are called SIBs,
and represent executable functionalities, whose labeled
outgoing edges, called branches, lead to the logically next
appropriate SIB to execute.

 In the spirit of its predecessors, DIME empowers
prototype-driven application development following OTA
(One Thing Approach [17]) and XMDD (Extreme Model-
Driven Design [18]) by putting Subject Matter Experts
(potentially non-programmers) in the core of the development
process. Hence, different aspects of an application are
described with the respective most adequate form of model.
All these models are interdependently connected, collectively

shaping the One Thing model in a very formal yet easy to
understand way. This is supported to the extent that the
application can be one-click-generated to a running product.

 The models created with DIME are transformed into
code in a generation step where the complete target
application is assembled according to the model’s control
flow and to the code of the elementary blocks, called SIBs.
The target of this product generation is the DyWA
framework, which constitutes the actual runtime environment,
supports the deployment phase, and manages data persistence.
However, the runtime platform, programming language, and
frameworks are a matter of the corresponding (full) code
generator, and may be changed without touching the models.

 Consistent model-driven design together with the
generative, service-oriented product assembly provide users
with early prototyping of executable web applications as well
as explicit support for product evolution, this due to the agile
nature of version management for data management and
persistency in DyWA. Altogether, the approach has the
potential to tremendously push development cycles in an
agile but consistent manner.

 For model design, a family of Graphical Domain-
specific Languages (GDSL) is tailored to express specific
aspect of typical web applications:

• Data models cover the design of domain models based on
common concepts like classes, attributes, and uni- or bi-
directional relations between elements.

• GUI models specify the structure of (re-usable components
of) web pages and the data binding in data sensitive user
interface components.

• Different Process models types span the core business
logic, data retrieval (search queries) as well as dynamic
access control (security guards, particularly interesting for
this platform).

Relations between these aspects are modeled by cross-
referencing the models, this way creating hierarchical model
structures.

Fig. 3 L0, L1, and SFS SIB palettes for the SEcube

 Such models are constituted by connected basic model
components called SIBs (Service Independent Building
Blocks) that either encapsulate other existing models or link
to implementations, in form of code, or some form of API
calls, e.g. services, RPC, other local or remote libraries. SIBs
are the units of model re-use, and are well suited to represent

library elements. For instance, the SEcube Layer0 and Layer1
API collections are seen in DIME’s Diagram Editor as SIB
palettes. Fig. 3 shows this for the Layer0 and Layer1 services,
as well as for the Data at rest palette (Secure File System) of
services described in [10], with a graphical representation of
the SIBs within each layer. Each SIB in the L0 and L1
palettes corresponds to one of the functions discussed in the
previous Section, with the L0 and SFS system SIBs spelled
out and the L1 SIBs labeled according to their abstract types
in DIME.

The inner logic flows of complex SIBs, once designed, are
process models, represented as SLGs in DIME. The
collection of available process models and the creation of
cross-references are found in the Models View. The Data
View lists data types and type attributes in a structured
fashion. The Properties View deals with attributes and
parameters. The Model Validation View manages the
syntactic and semantic checks that provide guidance for the
user and ensure correctness wr.t the current set of properties,
as discussed in more depth in [14].

Fig. 4 Uses(x) relation of the SecureWrite SIB of the Secure

File System (SFS) palette

Fig. 4 shows the subsets of L0 and L1 palettes used to
implement a Secure Write operation within the Secure File
System palette of the SDK described in [10].
As frequent for higher level functions, the internal behaviors
of the Secure Write SIB are context dependent, and use
different sets of functionalities in different contexts. This
information and the ability to analyze and visualize it easily
are important for any design decision that propagates across
functionalities. For instance, when performing an impact
analysis of changes in the underlying platform libraries. the
Uses(x) relation is useful: similar to a call graph, or to a
reachability analysis at the SIB level, Uses(x) for a given SIB
returns the set of SIBs that occur in its Service Logic.
• The solid line encloses the SIBs used when the device is

first inserted, at connection time. In this case, the logic
flow internal to the Secure Write operation foresees that
the device needs to be found using the L0
get_DEV_LIST SIB, then the L1 login procedures
must be executed, followed by cryptographic and key
handling functions, using also the utility functions. The
communication happens all the time via the L0
transmit/receive functionality TX_RX

• For further SecureWrite operations carried out after the
first one, the login has already taken place and the chip

has already the correct key set. In this case the logic
internally executed is simpler, and uses only the SIBs
enclosed in the dotted line. In this case, they are mostly
cryptographic functions, and of course the L0
transmit/receive functionality TX_RX.

Already this simple example shows how the inner workflows
of otherwise quite elementary operations can become
orchestrations in the secure case, and how it may be useful to
be able to guarantee properties of those flows, especially if
context plays a role.

 Throughout the development life-cycle, DIME design-
time well-formedness and consistency, enabling one-click-
generation and direct deployment of a sound and secure web
application at any time. Continuous change and evolution are
supported by means of iterative model modification, re-
generation and re-deployment.

4 This Track
Addressing the path to End-to-end Security and cyber
security, from the hardware to application, this special track
acknowledges that security and cybersecurity are an
increasing concern for all the actors in the IT and
societal space. One of the limiting factors to integrated
security is the lack of coordination between the different
layers of security that individually cover the layers of the IT
stack. Today, hardware, operating system, middle-
ware, virtualization layer, and the many layers and
components that constitute a user-facing application,
including data and persistency, and the communication
over networks, are still developed largely independently, with
little inherent integration. Data at rest, data in motion,
communication access and governance, as well as system
evolution (e.g., through updates) are managed individually,
too often under the responsibility of different actors,
different technologies, different products and vendors. In this
context, concerns of holistic security are growing, and call for
a better end to end integration and communication across the
different layers.

This paper illustrated how the partnership of different actors
(an SME vendor in security with leading edge research
institutions in hardware and software) has managed to create
the SEcube™, an open source platform that integrates all
these layers. The research and technology contributions
concern the model driven and flexible integration and
customization of security capabilities, features, and assets,
rooted in the hardware device, and used and preserved in the
software layers.

Other 4 papers of this track provide in-depth descriptions of
the security primitives and protocols [10, 11], the design
environment [12,14], several case studies in different
application domains and technology spaces, ranging from
web applications [12] to computer vision and robotics [14],
and a first glimpse of how to deal with property verification
and enforcement [14] in this overall platform .

Additionally, paper [19] concerns the Italian National Cyber
Security Framework, a methodology that aims to offer to the
organizations a volunteer approach to cope with awareness,
management, and reduction of the cyber security risk. The
Framework approach is deeply tied to the risk analysis rather
than to technical standards. It is a generalization of the US
NIST Framework for Improving Critical Infrastructure
Cybersecurity and it has been realized in alignment with the
NIST guidelines.

Acknowledgement
 This work was supported, in part, by Science
Foundation Ireland grant 13/RC/2094 and co-funded under
the European Regional Development Fund through the
Southern & Eastern Regional Operational Programme to Lero
- the Irish Software Research Centre (www.lero.ie).

References
[1] Toppan Ltd, “Side-channel Attack Standard Evaluation Board:

SASEBO”, http://www.toptdc.com/en/product/sasebo/, [Online;
accessed 19-May-2016].

[2] C. O’Flynn, and D. C. Zhizhang. "ChipWhisperer: An open-source
platform for hardware embedded security research." In: Constructive
Side-Channel Analysis and Secure Design. Springer International
Publishing, 2014. 243-260.

[3] Arm LTD, “Juno ARM Development Platform”,
http://www.arm.com/products/tools/development-boards/versatile-
express/juno-arm-development-platform.php, [Online; acc. 19 5.2016].

[4] Inverse Path Srl, “USB Armory”,
https://inversepath.com/usbarmory.html, [Online; ac. 19-May-2016].

[5] L. H. Crockett, R. A. Elliot, M. A, Enderwitz, and R. W. Stewart.
The Zynq Book: Embedded Processing with the Arm Cortex-A9 on the
Xilinx Zynq-7000 All Programmable Soc. Strathclyde Ac. Media, 2014.

[6] Altera Corportation, “Excalibur Devices”,
https://www.altera.com/products/general/devices/arm/arm-index.html,
[Online; accessed 19-May-2016].

[7] ST Microelectronics, "STM32F4 Series Data Sheet - DocID022152 Rev
7", March 2016

[8] Lattice Semiconductor, “MachXO2™ Family Data Sheet – DS1035 –
v3.2”, May 2016

[9] Infineon, "Infineon Chip Card & Security ICs Portfolio", October 2015
[10] A. Varriale, P. Prinetto, A. Carelli, and P. Trotta, “SEcubeTM: Data at

rest & data in motion protection,” Proc. Int. Conf. on Security and
Management (SAM), part of The World Congress in Computer Science,
Computer Engineering and Applied Computing (WorldComp), July
2016, in press.

[11] G. Di Natale, A. Carelli, P. Trotta, and T. Margaria, “Model driven
design of crypto primitives and processes,” Proc. Int. Conf. on Security
and Management (SAM), part of The World Congress in Computer
Science, Computer Engineering and Applied Computing (WorldComp),
July 2016, in press.

[12] S. Boßelmann, J. Neubauer, S. Naujokat, and B. Steffen, “Model driven
design of secure high assurance systems: an introduction to the open
platform from the user perspective,” Proc. Int. Conf. on Security and
Management (SAM), part of The World Congress in Computer Science,
Computer Engineering and Applied Computing (WorldComp), July
2016, in press.

[13] A. Varriale, E. I. Vatajelu, G. Di Natale, P. Prinetto, P. Trotta, and T.
Margaria, “SEcube™: An Open-Source Security Platform in a Single
SoC,” Design & Technology of Integrated Systems in Nanoscale Era
(DTIS), 2016 11th IEEE Int Conf. on, April 2016.

[14] G. Airò Farulla, M. Indaco, A. Legay, and T. Margaria, “Model driven
design of secure properties for vision-based applications: A case study,”

Proc. Int. Conf. on Security and Management (SAM), part of The World
Congress in Computer Science, Computer Engineering and Applied
Computing (WorldComp), July 2016, in press

[15] B. Steffen, T. Margaria, R. Nagel, S. Jörges, and C. Kubczak, "Model-
driven development with the jABC," In: HVC 2006, Haifa, Israel. Vol.
4383. LNCS. Springer, 2007, pp. 92–108.

[16] J. Neubauer, M. Frohme, B. Steffen, and T. Margaria, “Prototype-
Driven Development of Web Applications with DyWA,” In: Proc. of
6th ISoLA. LNCS 8802. Springer, 2014, pp. 56–72.

[17] T. Margaria, and B. Steffen. “Business Process Modelling in the jABC:
The One-Thing-Approach,” In: Handbook of Research on Business
Process Modeling. IGI Global, 2009.

[18] T. Margaria, B. Steffen. “Service- Orientation: Conquering Complexity
with XMDD”. In: Conquering Complexity. Springer, 2012, pp.217–236.

[19] R. Baldoni, and L. Montanari, “End2End CyberSecurity, based on a
strong Public-Private Partnership,” Proc. of the Int. Conf. on Security
and Management (SAM), part of The World Congress in Computer
Science, Computer Engineering and Applied Computing (WorldComp),
July 2016, in press.

