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Abstract The SEcube™ (Secure Environment cube) platform 
presented in this special track is an open source security-
oriented hardware and software platform constructed with 
ease of integration and service-orientation in mind. Its 
hardware component is a SoC platform: a single-chip design 
embedding three main cores: a highly powerful processor, a 
Common Criteria certified smartcard, and a flexible FPGA. 
The software components include several libraries of ready-
to use components that provide developers with different 
entry levels to adoption. The software is modular, and 
available as API or as services in an advanced model driven 
design environment. This way, security experts can avail of 
the open source character, and verify, change, or write from 
scratch the entire system, starting from the elementary low-
level blocks, but at the same time we support also developers 
who use the predefined primitives and can experience the 
SEcube™ as a high-security black box. This paper explains 
its aims and architecture, while the other papers detail the 
unique aspects of the overall platform.  

Keywords — Security, Hardware Platform, Software 
Development Environment, Model Driven Design, Open-
Source. 

1 Introduction 
Security is a key concern to any mission and business critical 
service and application. Wherever there is data or proprietary 
or personal content there is a need of mechanisms and 
provisions in place to ensure adequate users’ privacy, prevent 
and handle the commercial and legal issues related to security 
threats, and to safeguard the business stakeholders. 

The implementation of a suitable security layer usually 
requires special skills in several disciplines, including 
mathematics and cryptography. When the security target is 
provided as a combination of hardware and software solutions 
the system complexity increases and further skills are 

required (i.e. electronics, physics, informatics) to manage the 
integration and prevent all the possible attacks. At the same 
time the security may have a big impact on pre-existing 
systems and solutions, most of the times forcing the final 
users to change their habits. All these aspects make the 
security a very complex topic from the development stage to 
the final usage. 

In this paper and track we describe the architecture and the 
main characteristics of the SEcube™ (Secure Environment 
cube) platform, that is new in being consequently open and 
service-oriented. It is easy to integrate and capable of hiding 
significant complexity behind a set of simple and high-level 
services, that are accessible as APIs, the lowest level being 
the hardware itself. Also the hardware is open: its description 
and technical details are completely available, including the 
hardware netlist, the package, examples of schematics in 
order to plug the chip into possible boards. The complete 
software stack is open source as well, including libraries of 
services at different abstraction level offering palettes of pre-
defined services, and the service APIs, up to the model driven 
development environment itself, that that enables the easy 
creation of new (secure) applications and products. 

While the open platform concept is popular in the software 
domain (think of Linux, Java, and its spread in software 
development communities, like in bioinformatics), it is not 
yet commonly adopted for hardware, especially for security 
purposes, where the solutions are usually provided as a black 
box sometimes coming with a certification and always closed 
to any kind of disclosure or customizations. 

There are a few security-oriented open platforms available on 
the market. Some of them are focused on the evaluation of the 
system robustness against external physical attacks (e.g., 
Side-Channel attacks, power crypto-analysis, etc.), such as 
the Sasebo board [1] and the ChipWhisperer [2]. 



Other platforms based on ARM processors, like Juno ARM 
Development Platform [3] and the open source USB device 
provided by InversePath [4], allow creating general purpose 
software applications, including security-oriented solutions. 
Nevertheless, they are based on application processors and 
there are not specific security elements to be fully controlled 
or customized by the developers.  

Finally, there are single chips realized as a combination of 
one FPGA and one CPU, like Zynq proposed by Xilinx [5] or 
Excalibur based on Altera technology [6]. Nevertheless, in 
both the cases the platforms are more suitable at prototyping 
stage, since they are not cost-efficient, and a specialized 
security element, like a smart card, is still missing. 

This paper describes in detail the SEcube™ hardware 
(Section 2) and software (Section 3) architecture, gives a brief 
introduction to the DIME environment that provides the 
eXtreme Model Driven Development design and verification 
capability (section 4), and concludes in Section 5 with an 
introduction to the other papers of this track. They provide in-
depth descriptions of the security primitives and protocols, 
the design environment, several case studies, a first glimpse 
of how to deal in this overall context with property 
verification and enforcement. 

2 The SEcube™ Hardware Architecture 
As shown in Fig. 1, the hardware device is a single chip, 
which embeds three hardware components: a powerful CPU, 
a flexible FPGA and an EAL5+ certified smart card. The 
software library is developed as a free and open-source SDK, 
provided with user documentation. 

Internally, the SEcube™ device is a multi-module chip 
integrated in a 9mm x 9mm BGA package. As shown in Fig. 
2, it is a heterogeneous platform consisting of three elements. 

The first element is a high-performance ARM Cortex M4 
RISC CPU produced by ST Microelectronics [7]. It provides 
the following features: 

• 2 MBytes of Flash memory 
• 256 KBytes of SRAM 
• 32 bit parallelism 
• operating at frequency of 180 MHz  
• dedicated FPU (Floating Point unit) 
• Internal TRNG (True Random Number Generator) 
• Hardware Crypto Accelerator 
• Low power consumption 

  

 This CPU has been selected among many ARM based 
micro-controllers, since it offers several features that make it 
suitable for high-performance and security-oriented solutions. 
For example, it supports the Cortex CMSIS implementation 
that provides, among the others, the CMSIS-DSP libraries: a 
collection with over 60 DSP functions for various data types. 
The CMSIS-DSP library allows developers to implement 

complex, real time operations using the embedded harware 
floating point unit.  

 
Fig. 1 The SEcube™ Chip 

In addition, the CPU provides several peripherals such as SPI, 
UART, USB2.0 and SD/MMC, which ease the hardware 
integration in diverse devices. For example, a secure USB 
device can be easily realized using the USB2.0 and the SD 
card interfaces, respectively.  

On the security side, a TRNG (True Random Noise 
Generator) embedded unit, hardware mechanisms like MPU 
(Memory Protection Unit), and privileged execution modes 
allow implementing the security strategies required by a 
certified secure controller (e.g., privileged memory areas, key 
generation, etc.). 

 
Fig. 2 SEcube Hardware Architecture 

 

For programming, debug and testing operations, the CPU 
provides a standard JTAG interface that can be permanently 
disabled once the development cycle is over, protecting all 
the sensitive information through a physical hardware lock. 

The FPGA element, a Lattice MachXO2-7000 device [8], is 
based on a fast, non-volatile logic array providing the 
following main features: 



• 7000 LUTs 
• 240 Kbits embedded block RAM 
• 256 Kbits user flash memory 
• Ultra low-power device. 

  

The FPGA exposes 47 general purpose I/O which may be 
used as a 32-bit external bus able to transfer data at 3.2 Gb/s. 
Inside the chip, it is linked to the CPU through a 16-bit 
internal BUS, able to reach a data transfer rate of 1.4 Gb/s. A 
CPU-FPGA clock line is also provided in order to simplify 
the clock domains synchronization.  

 In order to limit the number of pins and the BGA 
package size, the FPGA JTAG is connected just to the 
embedded CPU, which manages both the debug and the 
programming operations. As a positive side effect, the FPGA 
configuration can be implemented by means of customized, 
high-security techniques. For example, the programming 
stream can be encrypted and signed through dedicated 
algorithms. The CPU and/or the smartcard elements can 
decrypt and verify it before being injected in the FPGA. 

The third component inside the SEcube™ device is an 
EAL5+ certified smartcard [9], based on a secure chip 
produced by Infineon that provides the following features: 

• ISO7816 interface  
• JavaCard Platform, Global Platform 2.2 
• 128 KB Flash 
• EC, ECDH up to 521 bit (HW accelerator) 
• RSA up 4096 bit (HW accelerator) 
• AES128/192/256 (HW accelerator). 

 

 As shown in Fig. 2, the CPU is connected to the 
embedded smartcard through a standard ISO7816 interface. 
The smartcard does not expose any interface outside the 
SEcube™ chip. This architectural decision provides high-
grade and certified security functionalities behind a simpler 
and easy-to- use application interface.    

 Combined together, the above three components, allow 
to build a heterogeneous computing architecture and create 
the foundations to build a very flexible open source security 
platform. 

2 The SEcube™ Software Libraries  
 The software side of the platform library consists of a 
multi-level, open source, collection of libraries available as an 
SDK [10, 11], together with a verification-oriented model 
driven design environment (currently DIME [12]). The 
libraries, especially if in conjunction with this design 
environment, allow developers who are not willing or able to 
produce the security primitives and protocols themselves to 
exploit the ready functions provided (as services or API) 
within the SEcube™ platform and experience the platform as 
a high-security black box. Conversely, security experts in the 
security domain can enjoy the openness and good 

documentation to verify, change or rewrite the pre-existing 
software starting from basic low-level blocks or even redefine 
entirely the whole system.  

 Leveraging the platform thought, we intend to create 
and nurture over time a community for developers at the 
different levels of security competence and in different 
application domains. This will ease the project, knowledge, 
and resource sharing and provide the collectivity of members 
with specialized support tailored to their needs. 

 From the architectural point of view, the software is 
divided in two main parts, depending on where physically the 
code runs: the Device-side relates to the SEcube™ based 
hardware device (e.g. USB secure token), while the Host-side 
relates to the appliance hosting the device (e.g. Laptop). 

 In this scenario the SEcube™ hardware device acts as a 
powerful coprocessor which provides a secure and fully 
controlled execution environment. All the functionalities 
implemented in the SEcube™ are thus exported to the host 
system through an open source secure RCP (Remote Call 
Procedure) protocol which is encapsulated in the SDK. 

 Before describing all the functional details (section 4), a 
general device and host side overview is given here.  

2.1 Device-Side Software  
 The device side, software provides the libraries of basic 
functionalities that are executed on the embedded 
microprocessor. According to their purposes, the libraries 
cover three layers: 

Functional Layer0. Closest to the device, software drivers 
offer basic functionalities to manage and access internal 
peripheral (e.g. TRNG, internal Flash memory, timers, etc), 
external devices connected to the CPU, i.e., FPGA and Smart 
Card, and the external communication interfaces as well (i.e. 
USB, UART, SPI and GPIOs). This level, in particular, is 
entitled to discover possible SEcube™ devices connected to 
the host system and create a bidirectional communication 
channel. These functionalities are exposed through a simple 
set of APIs:  

• L0_get_dev_list, which is in charge of 
discovering connected SEcube based devices, and  

• L0_tx_rx, which implements a low level send/receive 
operation on the channel. 

 

Functional Layer1. At the intermediate level, the core 
functions constitute the basic primitives for implementing 
secure applications. This layer provides basic cryptographic 
algorithms and various utilities, like functions for power 
management.  

 In addition, it is used to secure the communication 
channel after a successful login, which can be easily 
implemented as a multi-factor authentication thanks to the 
three hardware elements inside the chip and the password 
provided by the user.  



The Layer1 exposes several functions to manage both the 
device provisioning and the user/admin operational processes: 

• pin and primary keys initialization (e.g., 
L1_factory_init and L1_initLogin) 

• login (e.g. L1_loginAdmin, L1_loginUser and 
L1_changePinUser) 

• logout (e.g. L1_logoutAdmin and 
L1_logoutUser) 

• information retrieval (e.g., L1_readDSN, 
L1_getAlgorithms, and L1_getKeyList) 

• encryption/decryption/signature verification (e.g., 
L1_crypto_init, L1_crypto_setIV, 
L1_crypto_update and L1_crypto_finit) 

• key management (e.g., L1_injectKey and 
L1_deleteKey). 

 

Functional Layer2. At a higher level, the security 
abstraction layer allows developers to create secure software 
and services for the applications (e.g., secure file system 
[10]), avoiding the need to understand in detail the low-level 
hardware and security mechanisms. 

 When the security target does not require a hardware 
implementation, the SEcube device can be virtualized by a 
software library which provides all the layers above running 
on the host. 

2.2  Host-Side Software  
 On the host side, the software is tailored for existing 
devices (e.g., laptops or Desktop PC) that see the SEcube 
hardware as an external peripheral and use it for the specific 
functionalities offered, like cryptographic hardware 
acceleration. For this communication, the SEcube device is 
seen as a closed black box providing utility services. The host 
starts the service request by sending the related command and 
the optional data packets, through a proper interface, 
according to a custom protocol.  

 Also the host side code is open source. It is designed to 
be both scalable, e.g., for dealing with multiple devices, and 
portable on different operating systems, thus limiting the 
usage of and isolating platform-dependent modules.  

The host-side software runs on top of the host operating 
system, and I structured in two main levels.  

Layer0 implements the basic functionalities to communicate 
with the SEcube, including (a) sending/receiving command 
and data packets from/to the device, (b) segmentation of raw 
data streams into protocol-compliant packets, (c) functions 
implementing standard cryptographic algorithm and (d) low-
level error management functions. Moreover, commodities 
functions are also provided, such as low-level data 
manipulation in dealing with possible endianness mismatches 
between the host side and the SEcube™ embedded CPUs. 

 Host-side software relies directly on the Operating 
System calls and it supports many OSs and platforms, 

including Microsoft Windows, Unix-like environments, and 
MacOS. To improve portability, OS-dependent sub-modules 
(e.g., communication interface, file system, etc.) are easily 
identifiable. 

Layer1 is built over the Layer0 and provides a higher 
abstraction library, like multi-factor login, secure 
communication channel, cryptographic algorithms and key 
management. As we see in Fig. 3, currently, the Layer 1 
library includes 16 functions, of which 6 concern login/logout 
(called log in the picture, which is their abstract type) 4 the 
key management (key), 4 the cryptography (crypt) plus 2 
utility functions (utils). These functions can be combined 
to implement more complex security mechanisms at higher 
level, as detailed in [12,] [13], and [14]. 

 The Layer1 also allows developers to manage several 
SEcube™ devices at the same time, providing dedicated 
operation control flows (one command/response session per 
communication channel), which allow encoding and decoding 
commands for the individual SEcube™ target. 

 As shown in [10] and [11] and sketched in the next 
section, the Layer 1 services are the basic building blocks for 
developers to create complex and tailored security primitives. 
As shown in [12] and [14], design of secure solutions based 
on these services eases the understanding and reduces the 
time to market drastically. The key to this speed and 
increased confidence in the correctness and security of an 
application is a model-driven design that includes these ready 
but customizable security services and protocols already at 
design time, on the models of any application. How the 
DIME environment supports this is explained in the next 
section. 

3 Modeling Environment  
 DIME (the DyWA Integrated Modeling Environment) is 
an integrated solution for rigorous model-driven development 
of sophisticated and high assurance web applications. They 
are modeled in a simplicity-driven fashion that focuses on 
describing what application is sought (descriptive), instead of 
how the application is realized (prescriptive). Further design 
goals are agility and security as well as quality assurance. It is 
a consequent refinement of the realization of jABC4 (Java 
Application Building Center 4, [15]) for process modeling 
and DyWA (Dynamic Web Application [16]) for domain 
modeling and data persistence. The application workflow 
models in DIME are graph models: nodes are called SIBs, 
and represent executable functionalities, whose labeled 
outgoing edges, called branches, lead to the logically next 
appropriate SIB to execute. 

 In the spirit of its predecessors, DIME empowers 
prototype-driven application development following OTA 
(One Thing Approach [17]) and XMDD (Extreme Model-
Driven Design [18]) by putting Subject Matter Experts 
(potentially non-programmers) in the core of the development 
process. Hence, different aspects of an application are 
described with the respective most adequate form of model. 
All these models are interdependently connected, collectively 



shaping the One Thing model in a very formal yet easy to 
understand way. This is supported to the extent that the 
application can be one-click-generated to a running product. 

 The models created with DIME are transformed into 
code in a generation step where the complete target 
application is assembled according to the model’s control 
flow and to the code of the elementary blocks, called SIBs. 
The target of this product generation is the DyWA 
framework, which constitutes the actual runtime environment, 
supports the deployment phase, and manages data persistence. 
However, the runtime platform, programming language, and 
frameworks are a matter of the corresponding (full) code 
generator, and may be changed without touching the models. 

 Consistent model-driven design together with the 
generative, service-oriented product assembly provide users 
with early prototyping of executable web applications as well 
as explicit support for product evolution, this due to the agile 
nature of version management for data management and 
persistency in DyWA. Altogether, the approach has the 
potential to tremendously push development cycles in an 
agile but consistent manner.  

 For model design, a family of Graphical Domain-
specific Languages (GDSL) is tailored to express specific 
aspect of typical web applications: 

• Data models cover the design of domain models based on 
common concepts like classes, attributes, and uni- or bi-
directional relations between elements. 

• GUI models specify the structure of (re-usable components 
of) web pages and the data binding in data sensitive user 
interface components. 

• Different Process models types span the core business 
logic, data retrieval (search queries) as well as dynamic 
access control (security guards, particularly interesting for 
this platform). 

Relations between these aspects are modeled by cross-
referencing the models, this way creating hierarchical model 
structures.  

 
Fig. 3 L0, L1, and SFS SIB palettes for the SEcube  

 
 Such models are constituted by connected basic model 
components called SIBs (Service Independent Building 
Blocks) that either encapsulate other existing models or link 
to implementations, in form of code, or some form of API 
calls, e.g. services, RPC, other local or remote libraries. SIBs 
are the units of model re-use, and are well suited to represent 

library elements. For instance, the SEcube Layer0 and Layer1 
API collections are seen in DIME’s Diagram Editor as SIB 
palettes. Fig. 3 shows this for the Layer0 and Layer1 services, 
as well as for the Data at rest palette (Secure File System) of 
services described in [10], with a graphical representation of 
the SIBs within each layer. Each SIB in the L0 and L1 
palettes corresponds to one of the functions discussed in the 
previous Section, with the L0 and SFS system SIBs spelled 
out and the L1 SIBs labeled according to their abstract types 
in DIME. 

The inner logic flows of complex SIBs, once designed, are 
process models, represented as SLGs in DIME. The 
collection of available process models and the creation of 
cross-references are found in the Models View. The Data 
View lists data types and type attributes in a structured 
fashion. The Properties View deals with attributes and 
parameters. The Model Validation View manages the 
syntactic and semantic checks that provide guidance for the 
user and ensure correctness wr.t the current set of properties, 
as discussed in more depth in [14]. 
 

 
Fig. 4  Uses(x) relation of the SecureWrite SIB of the Secure 

File System (SFS) palette  

 
Fig. 4 shows the subsets of L0 and L1 palettes used to 
implement a Secure Write operation within the Secure File 
System palette of the SDK described in [10].   
As frequent for higher level functions, the internal behaviors 
of the Secure Write SIB are context dependent, and use 
different sets of functionalities in different contexts. This 
information and the ability to analyze and visualize it easily 
are important for any design decision that propagates across 
functionalities. For instance, when performing an impact 
analysis of changes in the underlying platform libraries. the 
Uses(x) relation is useful: similar to a call graph, or to a 
reachability analysis at the SIB level, Uses(x) for a given SIB  
returns the set of SIBs that occur in its Service Logic.   
• The solid line encloses the SIBs used when the device is 

first inserted, at connection time. In this case, the logic 
flow internal to the Secure Write operation foresees that 
the device needs to be found using the L0 
get_DEV_LIST SIB, then the L1 login procedures 
must be executed, followed by cryptographic and key 
handling functions, using also the utility functions. The 
communication happens all the time via the L0 
transmit/receive functionality TX_RX 

• For further SecureWrite operations carried out after the 
first one, the login has already taken place and the chip 



has already the correct key set. In this case the logic 
internally executed is simpler, and uses only the SIBs 
enclosed in the dotted line. In this case, they are mostly 
cryptographic functions, and of course the L0 
transmit/receive functionality TX_RX.  

 
Already this simple example shows how the inner workflows 
of otherwise quite elementary operations can become 
orchestrations in the secure case, and how it may be useful to 
be able to guarantee properties of those flows, especially if 
context plays a role. 

 Throughout the development life-cycle, DIME design-
time well-formedness and consistency, enabling one-click-
generation and direct deployment of a sound and secure web 
application at any time. Continuous change and evolution are 
supported by means of iterative model modification, re-
generation and re-deployment. 

4 This Track 
Addressing the path to End-to-end Security and cyber 
security, from the hardware to application, this special track 
acknowledges that security and cybersecurity are an 
increasing concern for all the actors in the IT and 
societal space. One of the limiting factors to integrated 
security is the lack of coordination between the different 
layers of security that individually cover the layers of the IT 
stack. Today, hardware, operating system, middle-
ware, virtualization layer, and the many layers and 
components that constitute a user-facing application, 
including data and persistency, and the communication 
over networks, are still developed largely independently, with 
little inherent integration. Data at rest, data in motion, 
communication access and governance, as well as system 
evolution (e.g., through updates) are managed individually, 
too often under the responsibility of different actors, 
different technologies, different products and vendors. In this 
context, concerns of holistic security are growing, and call for 
a better end to end integration and communication across the 
different layers. 
 
This paper illustrated how the partnership of different actors 
(an SME vendor in security with leading edge research 
institutions in hardware and software) has managed to create 
the SEcube™, an open source platform that integrates all 
these layers. The research and technology contributions 
concern the model driven and flexible integration and 
customization of security capabilities, features, and assets, 
rooted in the hardware device, and used and preserved in the 
software layers.  

Other 4 papers of this track provide in-depth descriptions of 
the security primitives and protocols [10, 11], the design 
environment [12,14], several case studies in different 
application domains and technology spaces, ranging from 
web applications [12] to computer vision and robotics [14], 
and a first glimpse of how to deal with property verification 
and enforcement [14] in this overall platform . 

Additionally, paper [19] concerns the Italian National Cyber 
Security Framework, a methodology that aims to offer to the 
organizations a volunteer approach to cope with awareness, 
management, and reduction of the cyber security risk. The 
Framework approach is deeply tied to the risk analysis rather 
than to technical standards. It is a generalization of the US 
NIST Framework for Improving Critical Infrastructure 
Cybersecurity and it has been realized in alignment with the 
NIST guidelines.  

Acknowledgement  
 This work was supported, in part, by Science 
Foundation Ireland grant 13/RC/2094 and co-funded under 
the European Regional Development Fund through the 
Southern & Eastern Regional Operational Programme to Lero 
- the Irish Software Research Centre (www.lero.ie). 

References 
[1] Toppan Ltd, “Side-channel Attack Standard Evaluation Board: 

SASEBO”, http://www.toptdc.com/en/product/sasebo/, [Online; 
accessed 19-May-2016]. 

[2] C. O’Flynn, and D. C. Zhizhang. "ChipWhisperer: An open-source 
platform for hardware embedded security research." In: Constructive 
Side-Channel Analysis and Secure Design. Springer International 
Publishing, 2014. 243-260. 

[3] Arm LTD, “Juno ARM Development Platform”, 
http://www.arm.com/products/tools/development-boards/versatile-
express/juno-arm-development-platform.php, [Online; acc. 19 5.2016]. 

[4] Inverse Path Srl, “USB Armory”, 
https://inversepath.com/usbarmory.html, [Online; ac. 19-May-2016]. 

[5] L. H. Crockett, R. A. Elliot, M. A, Enderwitz, and R. W. Stewart. 
The Zynq Book: Embedded Processing with the Arm Cortex-A9 on the 
Xilinx Zynq-7000 All Programmable Soc. Strathclyde Ac. Media, 2014. 

[6] Altera Corportation, “Excalibur Devices”, 
https://www.altera.com/products/general/devices/arm/arm-index.html, 
[Online; accessed 19-May-2016]. 

[7] ST Microelectronics, "STM32F4 Series Data Sheet - DocID022152 Rev 
7", March 2016 

[8] Lattice Semiconductor, “MachXO2™ Family Data Sheet – DS1035 – 
v3.2”, May 2016 

[9] Infineon, "Infineon Chip Card & Security ICs Portfolio", October 2015 
[10] A. Varriale, P. Prinetto, A. Carelli, and P. Trotta, “SEcubeTM: Data at 

rest & data in motion protection,” Proc. Int. Conf. on Security and 
Management (SAM), part of The World Congress in Computer Science, 
Computer Engineering and Applied Computing (WorldComp), July 
2016, in press. 

[11] G. Di Natale, A. Carelli, P. Trotta, and T. Margaria, “Model driven 
design of crypto primitives and processes,” Proc. Int. Conf. on Security 
and Management (SAM), part of The World Congress in Computer 
Science, Computer Engineering and Applied Computing (WorldComp), 
July 2016, in press. 

[12] S. Boßelmann, J. Neubauer, S. Naujokat, and B. Steffen, “Model driven 
design of secure high assurance systems: an introduction to the open 
platform from the user perspective,” Proc. Int. Conf. on Security and 
Management (SAM), part of The World Congress in Computer Science, 
Computer Engineering and Applied Computing (WorldComp), July 
2016, in press. 

[13] A. Varriale, E. I. Vatajelu, G. Di Natale, P. Prinetto, P. Trotta, and T. 
Margaria, “SEcube™: An Open-Source Security Platform in a Single 
SoC,” Design & Technology of Integrated Systems in Nanoscale Era 
(DTIS), 2016 11th IEEE Int Conf. on, April 2016. 

[14] G. Airò Farulla, M. Indaco, A. Legay, and T. Margaria, “Model driven 
design of secure properties for vision-based applications: A case study,” 



Proc. Int. Conf. on Security and Management (SAM), part of The World 
Congress in Computer Science, Computer Engineering and Applied 
Computing (WorldComp), July 2016, in press 

[15] B. Steffen, T. Margaria, R. Nagel, S. Jörges, and C. Kubczak, "Model-
driven development with the jABC," In: HVC 2006, Haifa, Israel. Vol. 
4383. LNCS. Springer, 2007, pp. 92–108. 

[16] J. Neubauer, M. Frohme, B. Steffen, and T. Margaria, “Prototype-
Driven Development of Web Applications with DyWA,” In: Proc. of 
6th ISoLA. LNCS 8802. Springer, 2014, pp. 56–72. 

[17] T. Margaria, and B. Steffen. “Business Process Modelling in the jABC: 
The One-Thing-Approach,” In: Handbook of Research on Business 
Process Modeling. IGI Global, 2009. 

[18] T. Margaria, B. Steffen. “Service- Orientation: Conquering Complexity 
with XMDD”. In: Conquering Complexity. Springer, 2012, pp.217–236.  

[19] R. Baldoni, and L. Montanari, “End2End CyberSecurity, based on a 
strong Public-Private Partnership,” Proc. of the Int. Conf. on Security 
and Management (SAM), part of The World Congress in Computer 
Science, Computer Engineering and Applied Computing (WorldComp), 
July 2016, in press. 

 


