IP-core Manager for
FPGA-based design on
SEcube™

Project Documentation

Release: October 2019

IP-core Manager for FPGA-based design on SEcube™ Page 2 of EI
Document Classification: Public Release: 006

f
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 3 ofEl]
Document Classification: Public Release: 006

Proprietary Notice

The following document offers information, which is subject to the terms and conditions de-
scribed hereafter.

While care has been taken in preparing this document, some typographical errors, error or omis-
sions may have occurred. We reserve the right to make changes to the content and information
described herein or update such information at any time without notice. The opinions expressed
are in good faith and while every care has been taken in preparing this document, some typo-
graphical errors, error or omissions may have occurred. We reserve the right to make changes
to the content and information described herein or update such information at any time without
notice. The opinion expressed are in good faith and while every care has been taken in preparing
this document.

Authors

Maurizio DI LORENZO maurizdl@gmail.com

Simone MACHETTI simonemachetti@gmail.com

Alessandro MONACO alessandro.monaco.94@gmail.com

Flavio PONZINA flavio.ponzina@gmail.com

Paolo PRINETTO (President, CINI Cybersecurity National Lab) paolo.prinetto@polito.it
Gianluca ROASCIO (CINI Cybersecurity National Lab) gianluca.roascio@polito.it
Antonio VARRIALE (Managing Director, Blu5 Labs Ltd) av@blu5labs.eu

Trademarks

Words and logos marked with ° or ™ are registered trademarks or trademarks owned by Blu5 View
Pte Ltd. Other brands and names mentioned herein may be the trademarks of their respective
owners. No use of these may be made for any purpose whatsoever without the prior written
authorization of the owner company.

Disclaimer

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN “AS IS” BASIS
AND ITS AUTHORS DISCLAIM ALL WARRANTIES, EXPRESS, OR IMPLIED, INCLUDING BUT NOT LIM-
ITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
RIGHTS OR ANY IMPLIED WARRANTIES OR MERCHANTABILITY OR FITNESS FOR A PURPOSE. THE
SOFTWARE IS PROVIDED TO YOU “AS IS” AND WE MAKE NO EXPRESS OR IMPLIED WARRANTIES
WHATSOEVER WITH RESPECT TO ITS FUNCTIONALITY, OPERABILITY, OR USE, INCLUDING, WITH-
OUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PURPOSE,
OR INFRINGEMENT. WE EXPRESSLY DISCLAIM ANY LIABILITY WHATSOEVER FOR ANY DIRECT, INDI-
RECT, CONSEQUENTIAL, INCIDENTAL OR SPECIAL DAMAGES, INCLUDING, WITHOUT LIMITATION,
LOSS REVENUES, LOST PROFITS, LOSSES RESULTING FROM BUSINESS INTERRUPTION OR LOSS OF
DATA, REGARDLESS OF THE FORM OF ACTION OR LEGAL THEREUNDER WHICH THE LIABILITY MAY
BE ASSERTED, EVEN IF ADVISED OF THE POSSIBILITY LIKELIHOOD OF SUCH DAMAGES.

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

mailto:maurizdl@gmail.com
mailto:simonemachetti@gmail.com
mailto:alessandro.monaco.94@gmail.com
mailto:flavio.ponzina@gmail.com
mailto:paolo.prinetto@polito.it
mailto:gianluca.roascio@polito.it
mailto:av@blu5labs.eu

IP-core Manager for FPGA-based design on SEcube™ Page 4 of EI
Document Classification: Public Release: 006

W

%
9‘7“”‘
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™
Document Classification: Public

Page 5 of@
Release: 006

Contents
6
Ig System Architecturd 7
E.l Global Architectura 7
D11 TheCPU o it 8
2.1.2 TheFPGA o 8
2.2 FPGA-CPU CONNECHION . « « v v v o e e e e e e e e e e e e 9
2.3 FPGAinternalstructurg e 10
2.3.1 Thedatabuffeq 11
2.3.2 TheIPCOreS . . o v v v e e e e e e e e e 14
RA ThelPManagell . . . o v v v v e e e e 15
B Communication Protocol 17
B.1 Overview oo 17
3.1.1 Polling o 17
83.1.2 Interrupf e e e 17
3.2 Thecontrolword 18
3.3 Sequence diagramy e e 19
ﬁ Driveﬂ 23
4.1 Low-level APIS o o o 23
4.2 FPGAinterrupt handler 25
4.3 CONCUITENCY ISSUEY « « « v o e e e e e e e e e e e e e e 25
5 User Manual 26
5.1 The SEcube™ System Setup v v v v e e e e 26
5.1.1 Hardware resourcesi 26
5.1.2 SOftwWare resourcedo v v vt i 28
5.1.3 Assembling the System o o 33
5.1.4 Assembling Stepd 33
5.1.5 Whatitshould happen o 36
5.2 C/CH+Project o v e 37
5.2.1 SEcube™ Open Source Software Libraries - Device Sidd 37
5.2.2 Running your first program: FPGA_LED (device-side) 40
5.2.3 How to import your own projecti o oo ou i e 42
5.3 HDLPrOJECH . « v o v v e e e e e e e e e e 42
5.3.1 Howtocreatealattice Project] o v i 42
5.3.2 Synthesis Procedurd 46
5.3.3 Deployment Tool USagE v v v v vt e e e e 49
5.4 Puttingalltogetherl 50
b Technical Guidelines 54
6.1 Hardware design guidelined 54
6.2 Software design guidelines 56
6.3 Single-core applications 57
7 __An example IP core: SHA256 59
7.1 Overviev_tl 59
7.2 Testing the core via HDLsimulation o v v v v e e e 60
7.3 Testing the synthesized core via high-level driver exampld 61

L i
h 50“’”

W

SEcube™ Open Source Hardware and Software Security Oriented Platform

www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 6 of@
Document Classification: Public Release: 006

1 Features

This chapter presents the features of the CPU-FPGA communication system we have in mind.
The idea is to create a flexible channel between the CPU and the IP cores accommodated inside
the FPGA of SEcube™ . Particular attention is given to performance, parallelism and hardware
design. The cooperation between the two actors of the communication is intended to follow
these specifications:

¢ The CPU must communicate with the IP cores through transactions, i.e., sets of data ex-
changed from an initial packet which opens the connection to a final one which closes it

¢ Transactions are exclusive: the CPU cannot handle a transaction with more than a single IP
core at a time

¢ Inside the FPGA, several IP cores might work simultaneously
e Each core is not aware of the presence and the status of other cores inside the FPGA

¢ The typical transactions between the CPU and a core is the following: the CPU opens a
transaction with a core and writes on a portion of dual-side-accessed shared memory its
inputs, which are read and processed by the core that then writes results again on the same
block of memory; the response can arrive either within the transaction or after a certain
time after the transaction has been closed: in this case, the core requests to interrupt the
CPU before writing the results

¢ The FPGA should be efficiently designed, whatever the number of cores inside

¢ The cores can be designed in whatever way, but they must present a standard interface for
the communication

¢ The cores can be implemented in such a way to support an error signalling system to the
central manager and thus to the CPU.

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 7 of @
Document Classification: Public Release: 006

2 System Architecture

2.1 Global Architecture

The core of the SEcube™ Hardware device family is a 3D multi-module SoC (System-on-Chip),
integrated in a 9mm x 9mm BGA package. The single chip embeds three hardware components:
a powerful processor, a flexible FPGA, and an EAL5+ certified smart card. In this section, we want
to give an overview of the global system we are dealing with, in order to have clear in mind the
communication possibilities between the CPU and the FPGA: for such reason, we are going to
present with more details the CPU and the FPGA blocks and their relative interface.

=
o =
a Z2Eoos
v v <
S ¢y EEERZ
VCORE 3 ADC
VCCIo0 z UART
veeion & ‘
VCCIO2 > STM32F4 SD/SDIO 4-bit
Veeios CPU USB 2.0 FS/HS ULPI
veciod T USB 2.0FS PHY
veeios o SPIM/S
VSS MachX02-7000 |«» e
(o]
/00 FPGA = -
1101 1S07816
1/0 2 Y
1703
Vo4 SLJ52G vee
: SmartCard vss
1/0 46

Figure 1: The SEcube™ Hardware Architecture

W

%
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 8 ofEl]
Document Classification: Public Release: 006

2.1.1 The CPU

The processor adopted within the SEcube™ is the STM32F429, produced by ST Microelectronics™,
which includes a high-performance ARM Cortex M4 RISC core and provides the following features:

¢ 2 MiB of Flash memory

e 256 KiB of SRAM

e 32-bit parallelism

¢ Operating frequency of 180 MHz

e Low power consumption.

This CPU has been selected among many ARM-based microcontrollers, since it offers several fea-
tures that make it suitable for high-performance and security-oriented solutions. For example,
it supports the Cortex CMSIS implementation that provides, among the others, the CMSIS-DSP
libraries: a collection with over 60 DSP functions for various data types. The CMSIS-DSP library
allows developers to implement complex, real time operations using the embedded hardware
Floating Point Unit.

In addition, the CPU provides several peripherals such as SPI, UART, USB2.0 and SD/MMC, which
ease the hardware integration in diverse devices. For example, a secure USB device can be easily
realized using the USB2.0 and the SD card interfaces, respectively.

On the security side, a TRNG (True Random Noise Generator) embedded unit, hardware mecha-
nisms like MPU (Memory Protection Unit), and privileged execution modes allow implementing
the security strategies required by a certified secure controller (e.g., privileged memory areas,
key generation, etc.).

For programming, debug, and testing operations, the CPU provides a standard JTAG interface that
can be permanently disabled once the development cycle is over, protecting all the sensitive in-
formation through a physical hardware lock.

2.1.2 The FPGA

The FPGA element, a Lattice MachX02-7000 device, is based on a fast, non-volatile logic array
providing the following main features:

e 7,000 LUTs
e 240 Kib embedded block RAM
e 256 Kib user flash memory

¢ Ultra low-power device.

The FPGA exposes 47 general-purpose I/Os which may be used as a 32-bit external bus able to
transfer data at 3.2 Gib/s.

As outlined in Figure E], within the SEcube™ Chip the FPGA is connected to the CPU through a
16-bit internal bus, providing a data transfer rate of up to 1.6 Gib/s.

A CPU-FPGA clock line is provided to simplify the clock domains synchronization. To limit the
number of pins and the BGA package size, the FPGA JTAG is connected just to the embedded
CPU, which manages both the debug and the programming operations. Therefore, the FPGA con-
figuration can be implemented by means of customized, high-security techniques. For example,
the programming bitstream can be encrypted and signed through dedicated algorithms. The CPU
and/or the smartcard elements can then be used to decrypt and verify it before its injection into
the FPGA.

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™
Document Classification: Public

Page 9 of EI
Release: 006

2.2 FPGA-CPU connection

Here is presented the pin-to-pin interface between the CPU and the FPGA, which represent a

fundamental point for our work.

The set of interconnections is used for exchanging data, control, and status signals, including:

¢ Clock, reset and interrupt signals

¢ JTAG interface for programming the FPGA

e Other control lines

The configuration within the SEcube™ treats the FPGA as an external memory device (PSRAM),
leveraging the Flexible Memory Controller (FMC) available on the processor. The FMC is an inter-
facing peripheral of the microcontroller used to connect external memories such as NOR Flash,
NAND Flash, SRAM, and PSRAM, as in this case. With this configuration, each pin assumes a
specific behaviour, its value and transitions being directly managed by the FMC.

PA34B
PAI4A,
PAI38
PhEIA
PAZIB
PRI1A
PA18A
PR1BA
PR17A
— PRI7A
PR1GE
PATEA,
P38
PA1SA
PHTIE
PATIA
PR

PR

PATE

PATA

PRSE

PREA

PLISA
PLIDE
PLIZA
PLZZE
PLaak
PLI&E
PLI5A
PAIZA
PRAC

PRI1EE
FR1BD
PRTIC

MachX02-7000
FPGA

PE31A

PHIIE
PEID
PELSA
FEISE
PEIFA

FRAA

PR

Phoik

FBE/

PEIE
BETIA
PR13E
BETHA
FB1EE
FEI3AA
4]
FEIEA
PG

Pz

L]
FTII8
PT35A
PRTGA
FTISR
]
P
FT14C
k]
FT17C
T2

CPL_FPGA_ALIS_AQ

CPLL_FPGA_BLIS &1

CPU_FRGA_BUIS A2

CPLL_FPGA_BUIS A3

CPLL_FRGA_BLIS Ad

CPL_FPGA_BUIS_AS

CPL_FPGA_BUS DO

CPU_FAGA_BLIS_ D

CPU_FPGA_BUS D2

CPU_FPGA_BUS D3

CPL_FPGA_BLES D4

CPU_FPGA_BUS DS

CPLL_FPGA_BLES Dé

CPU_FPGA_BUS D7

CPU_FPGA_BLIS_ D8

CPL_FPGA_BLES DY

CPU_FPGA_BUS_DI0

CFU_FPGA_BUIS D11

CPL_FPGA_BLIS D13

CPU_FRGA_BLIS 13

CPL_FPCA_BLIS D14

CPLL_FPGA_BLIS DME

CPU_FPGA,_BLIE NOE

M) FRGA BLIS WWE

CPU_FPGA_BuUS NED

CFU_FPGA_BUS MEY

CPU_FPGA_CLE

CPU_FPGA_INT_N

CPU_PPuA_RET

CPU_FPGA_ITAG TDH

CPLL_FPGA_ITAG TDO

CPU_FPGA_ITAG TMS

CPU_FAGA_ITAG TOR

CPU_FPGA_PROGRAMN

The available pins within the bus are:

Figure 2: FPGA-CPU pin configuration within SEcube™

e Address — 6 pins (CPU_FPGA_BUS_AQ:5)

e Data — 16 pins (CPU_FPGA_BUS_DO0:15)

PG2
PE3
PE2

PEL
PER

STM32F4
CPU

P2
]
=01
P12

PFCH

PO
PCHT

PCH2

P
Paion
PaEn
Panz
Pa3

P

Pl

PO
Pal4
PETS

PHS

ERERERRRIRRRRERERRRRARRRRREREEEE

For additional details, please refer to STM32F405/415, STM32F407/417, STM32F427/437 and STM32F429/439
advanced Arm-based 32-bit MCUs Reference Manual, Chapter 37: https://www.st.com/content/ccc/resource/
technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/
jcr:content/translations/en.DM00031020.pdf#page=1602&z00m=100,0,116

L E
h 50“’”

SEcube™ Open Source Hardware and Software Security Oriented Platform

www.secube.eu

https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf#page=1602&zoom=100,0,116
https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf#page=1602&zoom=100,0,116
https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf#page=1602&zoom=100,0,116

IP-core Manager for FPGA-based design on SEcube™ Page 10 of @
Document Classification: Public Release: 006

Chip select — 2 pins (CPU_FPGA_BUS_NE1:2)

Clock — 1 pin (CPU_FPGA_CLK)

Controls — 2 pins (CPU_FPGA_{INT_N, RST})

JTAG — 5 pins (CPU_FPGA_JTAG_{TDI, TDO, TMS, TCK}, CPU_FPGA_PROGRAMN).

2.3 FPGA internal structure

The internal architecture to be accommodated on the FPGA embeds three main blocks: a dual-
ported data buffer where inputs and outputs are exchanged, the IP cores customized for executing
a given task, and a central IP manager for routing, arbitrating and configuring the communication.

< P
N y
IP1
7 AN
.| DATABUFFER /
16 bit x 64 < P
- N
IP MANAGER
,—\ PN

Figure 3: FPGA internal structure

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 11 of@
Document Classification: Public Release: 006

2.3.1 The data buffer

cpu_fpga_clk

cpu_fpga_rst

row_0[15:0]

. cpu_fpga_bus_d[15:0]

+*

ipm_to_buf_data[15:0]

Y

F 3

cpu_fpga_bus_a[5:0] buf_to_ipm_data[15:0] .
DATABUFFER |e Ipm_addf5 0

cpu_fpga_bus_noe 16 bit x 64 ipm_rw

cpu_fpga_bus_nwe ipm_buf_enable

cpu_write_completed
e E——

cpu_fpga_bus_nel

> cpu_read_completed

>

Figure 4: Data buffer schematic

The data buffer represents the memory interfacing module with the CPU, where commands and
inputs for the FPGA arrive and where outputs are stored at the end of the operations. It is a dual-
ported portion of 128 B of shared synchronous SRAM, organized in 64 16-bit words. The buffer
presents two different interfaces at the two sides through which is accessed, so it is understand-
able the presence of a conspicuous logic that surrounds and controls the memory array. From
the CPU point of view, because of the employ of the FMC, the entire FPGA is seen as a block of
PSRAM, so signals and timings are accorded to this abstraction. Therefore, besides the common
data, address, clock and reset signals, the buffer presents three additional specific signals for the
FMC protocol: the generic enable (NE1), the output enable (NOE) and the write enable (NWE).
Below here we report values and timing of these signals in a timing diagram which shows the
behaviour of the protocol followed by the Flexible Memory Controller to interface the FPGA for
reading and writingE.

2STMicroeIectronics, Reference Manual RMO0090 for STM32F405/415, STM32F407/417, STM32F427/437 and
STM32F429/439 advanced ARM-based 32-bit MCUs, Chapter 37, “Flexible Memory Controller (FMC)”:
https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/
d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf#page=1602&zoom=
100,0,116

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf#page=1602&zoom=100,0,116
https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf#page=1602&zoom=100,0,116
https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf#page=1602&zoom=100,0,116

IP-core Manager for FPGA-based design on SEcube™ Page 12 of@
Document Classification: Public Release: 006

Memory transaction

A[25:0]

NBL[3:0]

NWE

NOE (
|
|
|
I
|
|
|
|
|

|
I
|
I — |
D[31:0] |) ?{ data driven by FSMC)—

|

ADDSET |l (DATAST+1)

h HCLK cycles ik HCLK cycles

Figure 5: Mode A write access waveforms of the FMC protocol for STM32F4xx MCU

Memory transaction

A[25:0]

NBL[3:0]

NOE r \l\

|
[
|
i
[
|
l n
! data driven
| { by memory l >_
[
ADDSET .| DATAST
HCLK cycles "~ HCLK cycles

[
L

Figure 6: Mode A read access waveforms of the FMC protocol for STM32F4xx MCU

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 13 ofEl]
Document Classification: Public Release: 006

The Flexible Memory Controller is able to manage 4 different banks of memory within a specific
address range. Bits [27:26] of the AHB address bus (HADDR) are interpreted by the FMC as the
identifier for 1 of the 4 banks, and enable the activation of the corresponding NEx signal (NE1,
NE2, NE3 or NE4), which is active low. The CPU-FPGA interconnection allows then to accommo-
date just 2 of these 4 banks of memory, presenting both NE1 and NE2 pin in the CPU interface.
Bits [25:0] of the HADDR bus are instead interpreted as the actual external memory address, but
actually just the lowest 6 of them are used.

When NEx is low, a memory operation is taking place. The address is forwarded and a setup time
for its stabilization is awaited. Then there is the data phase: if the NWE not asserted, the address
is intended to be a read address, and the CPU waits for a data response from the memory for
a given data setup time. If a write is to be performed, NWE is asserted and a word to be writ-
ten is forwarded and maintained for the data setup time. These setup times are decided by the
software configuration of the FMC and must be provided to the FPGA design as generic VHDL
parameters. The machine within the buffer recognizes when the FMC enters the address setup
time and the data setup time looking at the values of the interface signals, and once understood
sets an internal decrementing counter with the generic parameter values and waits for the end
of the different phases before acquiring a valid address and a valid data, or before providing it.
At the end of any CPU operations, the internal machine is able to send to the right-side interface
two strobes which indicate the completion of a read of or a write, as it is possible to see in Figure
E]. These signals are useful to synchronize the activity of the internal modules, as we will see.
From the internal side, the buffer is accessed in a simpler way as a standard bank of synchronous
fast memory, with an enable signal, two data busses for input and output, an address bus and a
read/write signal. These signals are in control of the module which is enabled to communicate by
the Manager.

The first row of the buffer is reserved to the command word for the Manager, as we will see in
the following chapters. Since this word is to be continuously monitored by the Manager to sense
any CPU command, the row is directly reflected to an output port.

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 14 of @
Document Classification: Public Release: 006

2.3.2 The IP cores

ipm_to_ip_data(N-1)[1 5:O]k

opcode_ip(N-1)[5:0]

enable_ip(N-1)

ack_ip(N-1)

int_pol_ip(N-1)

ipm_to_ip_data(N-1)[15:0]

r 3

buf_enable_ip(N-1)

) addr_ip(N-1)[5:0] IP'N

r 3

rw_ip(N-1)

interrupt_ip(N-1)

error_ip(N-1)

cpu_write_completed_ip(N-1)

cpu_read_completed_ip(N-1)

Figure 7: Example of IP core with its interface

The IP cores are the target modules of the CPU-FPGA communications, as they represent the hard-
ware accelerators needed by the CPU to enhance speed in executing some dedicate algorithms
and tasks. The designer is thus free to internally design the core as preferred, but must present
at least the following mandatory ports (Figure [ﬂ):

Clock and reset input signals

An enable signal as starting strobe for the internal machine

A dedicate 6-bit signal for the possible operative code

A single-bit input for the communication mode (interrupt/polling)
2 separate 16-bit buses for data input and data output

6-bit address bus

2 command signals for the data buffer (enable, read/write)

2 dedicate interrupt and error output lines

An acknowledgment (ACK) input line

CPU read and write completion input strobes

A core remains inactive until the enable signal coming from the Manager is asserted: this must
be the event that triggers its internal state machine. The enable signal ensures the core that the
internal-side signals of the buffer corresponds one-to-one to its memory interfacing signals: the
buffer answer now to its commands. Therefore, the IP core can start a pipelined communication
with the master thank to the strobe signals which indicate the end of a read or of a write opera-
tion by the CPU.

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 15 of@
Document Classification: Public Release: 006

The core can be designed to support more than one operation, and both polling and interrupt
communication mode: the mode and the possible operative code are written by the CPU in the
command word of start transaction and are forwarded to the module at the enable time by the
manager through two dedicated signals. When in polling mode, the CPU does not close the trans-
action until the output are returned on the buffer. It just awaits the completion of the compu-
tation polling a dedicate address or waiting for some predefined time necessary to the core to
end its job. When in interrupt mode, the core and the CPU have an input-transmitting transac-
tion first, then the communication is closed, and the core starts computing. When done, the core
asks to the manager the interruption of the CPU. When it is acknowledged, the core has a second
transaction during which the outputs are written on the shared memory. The system also pro-
vides support for error signalling from the IP cores, for example after an internal failure detected
by a built-in self-test procedure. A dedicate error signal is present in the interface to advise the
Manager, and consequently the CPU, of the problem.

2.4 The IP Manager

J cpu_fpga_clk J cpu_fpga_rst

row_0[15:0] ipm_to_ip_data(i)[1 5:[]]_
opcode_ip(i)[5:0]
ipm_to_buf_data[15:0] »
enable_ip(i)
buf_to_ipm_data[15:0] | ack_ip(i)
. . int_pol_ip(i)
DATA BUFFER lpm_2ddl5:0) P —————
. ip_to_ipm_data(i)[15:
16 bit x 64 ipm_rw « po o
buf_enable_ip(i)
ipm_buf_enable - IPi
IP MANAGER < addr_ip()[5:0]
cpu_write_completed
rw_ip(iy
cpu_read_completed
interrupt_ip(i)
error_ip(i)
cpu_fpga_bus_ne1 (from CPU)
cpu_write_completed_ip(i)
cpu_fpga int_n (to CPU) cpu_read_completed_ip(i)

Figure 8: The IP Manager connections

The IP Manager is the central main block of the architecture. It is the intelligent multiplexer/de-
multiplexer of the system. Its main intent is to put in communication the IP core addressed by the
CPU with the buffer where data are exchanged. The IP Manager-IP core interface is replicated for
each core placed in the design.

After the global reset, the module is in its IDLE state and waits for a request from the CPU. This
is forwarded under the form of a control word written in the first row of the buffer, row which
is immediately reflected towards the Manager not to lose time for addressing it before reading.
At each clock cycle during the IDLE state, the IP Manager monitors this signal, detecting at some
point the word of start transaction. As we will see in the next sections, this word contains the
ID number of the IP core desired by the CPU plus an operative code and other configuration bits.
One of them indicates the begin of a transaction. The IP Manager then enters in its MULTIPLEXING
state, putting into direct contact the signals on its IP interface with the ones on its buffer interface,
asserting the enable signal to the correct core, and forwarding to the corresponding interface the
operative code and the communication mode (interrupt/polling). The Manager detaches this link
only when the word of end transaction is written at row 0 of the buffer, disabling the core and
taking back the control of the signals to the buffer. During the multiplexing state, the module is

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 16 ofEl]
Document Classification: Public Release: 006

blind to any other request from the cores not involved in the communication and even to CPU
commands different from the end of transaction one, such that the exclusivity of the transactions
is preserved.

Once exited the MULTIPLEXING state, the Manager returns IDLE. When IDLE, it is sensitive to any
interrupt or error request coming from the IP cores. If the interrupt line of one IP core is high, the
Manager raises the global interrupt signal of the FPGA towards the CPU, writing at address 0x00
of the buffer the ID of the core that desires to interrupt the CPU. The CPU, after having read it,
possibly sends a control word of acknowledge for that request, which triggers the raising of the
corresponding ACK line of the Manager-core interface along with the enable. An acknowledgment
transaction thus begins, during which the core probably communicates its results to the CPU and
the Manager is in its MULTIPLEXING state, from which exits when the end of acknowledgment
transaction command arrives, as usual. The CPU can also decide of not caring the interrupt from
the FPGA, starting after some time another transaction without acknowledging the request, but
loses the right to know the ID of the interrupting IP and its results.

If an error line is raised by a core, the Manager forwards an interrupt request from the CPU by
itself, i.e., writing at address 0x00 its own ID, which is 0. An acknowledge for IP 0 from the CPU
equals the begin of a transaction during which the Manager itself communicates on the buffer (at
address 0x01) the ID of the IP which has signalled an internal fault. The faulty IP is not involved
in this exchange of information as in the interrupt case, and its error line remains up until the
problem is persistent. This cause no problem to the Manager, that once acknowledged by the
CPU becomes blind to that line until its next rising edge.

The CPU sees the Manager as an actor of the communication in this case and in this case only.
It is not possible, for the CPU, to start a transaction with the IP with ID 0 outside this situation,
because that ID is normally considered out of range and, for this reason, ignored.

Although, thank to this ID reservation, future updates of the project could include a Manager that,
for example, handles a transaction with the CPU to dynamically set which cores have the right to
interrupt and which must be silenced, or to dynamically set the priority order to be followed in
accepting core requests.

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 17 ofEl]
Document Classification: Public Release: 006

3 Communication Protocol

3.1 Overview

The following section is intended to describe the communication protocol that has been thought
for the project. It is necessary to keep in mind that the goal is to allow a flexible communica-
tion channel between the CPU and the FPGA. The direct connection between these two entities
seems to suggest that there is no need of a dedicated protocol. The point is that more cores are
accommodated within the design. With a single core, the communication would be very straight-
forward, since the two sides would implement a point-to-point communication. In the common
foreseen scenario, the CPU programs more than a single core, but the actual interface only allows
the processor to read and write the buffer of the FPGA. Hence the need of an additional entity
(the IP Manager) which has the aim of controlling the information exchange, and both the CPU
and the cores need to follow a given protocol for their communications.

To manage exclusivity of communication between a single core at a time and the CPU, such pro-
tocol is based on transactions: the CPU must send a specific data packet to open or to close a
transaction, which addresses one and one only IP. Once the transaction is open, the CPU and the
selected core can perform the exchange of information. At the end, the CPU must send a packet
to close the transaction.

As already mentioned before, the communication can be held in polling or in interrupt mode.

3.1.1 Polling

Polling is a very common way of communication between a master of a computing system and
a slave such as a peripheral or a coprocessor. The master continuously checks the status of the
interlocutor to monitor its state (which can be “something to communicate”, or “nothing to com-
municate”). The monitoring is done classically with a continuous read of the status on a shared
location, a portion of a memory or a control register.

In our case, the CPU can decide to communicate with a core in polling mode when the core com-
putation is thought to take a short time and can be waited idly without impactive loss of perfor-
mance. Inputs are then sent to the core and the transaction is maintained opened until the results
are ready.

When the communication is handled in this way, after the opening of the transaction, a phase of
handshaking with delivering of the inputs follows. Such inputs can be read by the core as soon
as they are written thanks to the write strobe sent by the buffer. The core, once read the last
input, starts working, while the CPU sets the polling location to a locking value and starts reading
it. When the core is done, it writes the outputs in the buffer without waiting any enabling signal,
since the transaction is open and it has rights to access the buffer. As last write, it writes the
unlocking code in the polling location. The CPU is thus unlocked and starts reading the outputs,
then closes the transaction. The driver of the core must be obviously aware of the location in the
buffer of the results, of the word to be polled and of the value to expect for the unlocking.

3.1.2 Interrupt

Interrupt is a good alternative to polling when working in a multitask environment. In this sce-
nario, the master first programs the slave and then continues its own computation, while the slave
reads the input, makes its job and at the end triggers an interrupt request to the master. This is
typically the most common way of communication in modern systems, because it offers higher
performance with respect of polling, because of the possibility for processor and accelerators of
working in parallel. The hardware overhead consists of a single additional line for each slave (in-
terrupt line).

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 18 of El]
Document Classification: Public Release: 006

In the SEcube™ FPGA, the cores do not have a dedicate interrupt line directly towards the CPU,
but the requests are all intermediated by the central IP Manager.

When the communication is held in interrupt mode, the CPU opens the transaction and writes the
input as usual, while the core is enabled by the Manager and reads them in parallel as soon as they
are written. Once written the last input, the CPU closes the transaction disabling the core, which
probably has already started its computation once read the last input. When finished, the core
raises its interrupt line transmitting the request to the Manager first, then the Manager writes
at location 0x00 the ID of the core and forwards its request to the interrupt output line of the
FPGA. The CPU receives the interruption and, sooner or later, may decide to respond. First, it
reads location 0x00 where it retrieves the ID of the interrupting IP, then opens an acknowledg-
ment transaction with this IP. At this point, the interrupt lines are cleared and the exchange of
the output on the buffer starts. The CPU has the only limitation of leaving some time to the core
to complete this write-out. Once completed this phase, the CPU closes the transaction.

3.2 The control word

The control word is the fundamental opening and closing word of any CPU-FPGA transaction. It
is located at address 0x00 of the data buffer, which is immediately reflected to the IP Manager
through a dedicate port, as previously said. The structure of the control word is reported below.

OPCODE I_P|ACK|B_E IPADDR

Figure 9: Bit fields of the control word

task to be performed.

Bits 15:10 OPCODE | Operative Code Hosts the possible operative
code instructing the core on the

Bit 9 I_P Communication Mode 0 : Polling Mode
1: Interrupt Mode

closed is a normal transaction

rupt request

Bit 8 ACK Acknowledgment Transaction | 0 : The transaction opened/-

1 : The transaction opened/-
closed acknowledges an inter-

Bit 7 B_E Begin/End of transaction 0 : End Transaction
1: Begin Transaction

Bits 6:0 IPADDR | Address of the IP core Hosts the IP core identifier. Can
assume any value from 0 to 127.

Whenever the Manager is IDLE and senses setting of bit 7, it enables the core specified by the
field IPADDR and reflects on its interface the other fields. When bit 7 is cleared by the CPU, all
the signals towards the cores are cleared consequently.

As will be presented in the following sections, we have developed a set of APIs to manage the
communication via software, including also functions for opening and closing a transaction with
given parameters that avoid the low-level bit-by-bit set of the control word.

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 19 of @
Document Classification: Public Release: 006

In this format, the control word is always set and cleared via software. However, the location
0x00 can be used in a different format from the inside, when the IP Manager uses it to write the
identifier of the core that requests to interrupt the CPU. In that case, bits 15 to 7 are cleared by
the IP Manager.

ojo,0j0jO0O|0]O0)]|O0]O IPADDR

Figure 10: Bit fields of the control word set via hardware during interrupt

3.3 Sequence diagrams

This section is intended to provide sequence diagrams of communication modes between the
CPU and the cores.

Typical reading and writing operations are presented. As already mentioned, the communication
is “pipelined”, in the sense that there is no need of waiting that an entire block of data has been
written/read before making the following read/write operation. This is achieved through the write
strobe asserted by the FSM present in the data buffer.

| CPU WRITE |

CPU Data Buffer IP Manager IP Core X

| I
. cpu_write_completed = '1' | cpu_write_completed = "1

I
I
I
I
I
I
|
=. The core is aware that

2n input has besn
written in the buffer
and can perform a read

Figure 11: Typical CPU write operation during a transaction with an IP core

CPUREAD

CPU Data Buffer IP Manager IP Core X

- cpu_read_completed = '1' E cpu_read_completed_ip[X) = "1 i

write

Figure 12: Typical CPU read operation during a transaction with an IP core

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 20 of EI
Document Classification: Public Release: 006

The typical polling and interrupt transactions between the CPU and the FPGA are presented below.

| POLLING TRANSACTION |

CPU Data Buffer IP Manager IP Core X

opcode_ip(X) = OPCODE

!
|
i
' enable_ip(X) ="1'
reflection of [0x00] |
|

write [0x00] <= OPCODE + "001" + X int_pol_ipfx} ='0"

it f input
WIHNE s8quence of mputs cpu_write_completed = '1' cpu_write_completed_ip[X} = ‘_'l
read addresses and commands read sequence of inputs
write [STATUS] <= LOCKED - last input read
The core starts
elaboratin
read [STATUS] g
LOCKED
read [STATUS]
LOCKED
read [STATUS]
LOCKED
The core ends its
. write addresses and commands | writs sequence of butputs elaboration
[STATUS] == UNLOCKED [STATUS] <= UNLOCKED
b3
read [STATUS]
UNLOCKED
N read sequence of outputs
write [0x00] <= OPCODE + "000" + ¥ reflection of [0x00]
= enable_ip(X) =

Figure 13: Polling transaction between the CPU and a core

A

SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™

Document Classification: Public

Page 21 of@l
Release: 006

| INTERRUPT TRANSACTION |
CPU Data Buffer IP Manager IP Core X
i ' i i
i ' i i
| H H |
| H | |
! H ! enable_ip(X] ='1' !
! write [0x00] <= OPCODE +"101" +X | reflectian of [0x00] i opcode_iplx) = OFCODE :
. int_pal_ip(X} ="1" |
>,
writing sequence of inputs
cpu_write_completed = '1' cpu_write_completed_ip{X) =1’
: > »
read addresses and commands read sequence of inputs
* €
. .
last input d
stinputres The core starts
X elaborating
write [0x00] <= OPCODE + 100" + X reflection of [0x00] : -
> » enable_ip(X) = 0
| |
P P H
i i '
i i '
| | '
i i '
i i
i i N
P P H
i i H
| | =
| | :
i 1]
i i '
i i H
i i i
]] N
i i .
i i H
]] N
i i ‘
i i H
]] H
i 1 |
| H i
i i i
]] N
i i H
| H i
]] N
| | i
| 1 | interrupt_ip(X) ='1' The core ends its
| ' [0x00] <= X < elaboration
i <
h 3
|
| interrupt="1' .
« :
i
read [0x00] i
X |
1
i .
write [0x00] <= OPCODE + =111 +X | reflection of [0x00] =nzble_ip(¥] = 'L
> > ack_ip[X}="1'
-
»
write addresses and commands write sequence of cutputs
The CPU, after having M <
acknowledged the core, . .
waits for some time to let
the core write its outputs . .
on the buffer
read sequence of outputs
.
.
ite [0x00] <= OPCODE + =110" + X refiection of [0x00]
wirit | 1 » » enable_ip(X] ='0"
>

Figure 14: Interrupt transaction between the CPU and a core

w

2
Ong, P

SEcube™ Open Source Hardware and Software Security Oriented Platform

www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 22 of EI
Document Classification: Public Release: 006

IP ERROR NOTIFICATION

CPU Data Buffer IP Manager 1P Core X

error_ip(X} = "1

[000] <=0
£
interrupt ="1'
< \
H
read [0x00] i
>
v]
H
write [000] <= OPCODE + "0L1" =0 _ | refisction of [0x00]
The CPU acknowledges the - -
Manager and then waits for [0x01] ==X
few cycles to let it write the €
faulty IP identifier read [0x01]
X
-
wirite [0x00] <= OPCODE + "010" + 0 reflaction of [0:00]

v

Figure 15: An IP core signals an internal error

W

H
547“’”"
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 23 ofEl]
Document Classification: Public Release: 006

4 Driver

This chapter describes the communication driver developed for interfacing the FPGA and the IP
cores within it.

For a correct communication, the complete driver should be composed of two layers: a high-level
one, composed of the specific functions for managing the task of each IP core, and a low-level
one, containing the low-level functionalities for the communication with the FPGA, as opening
and closing the transaction, or reading and writing a word on the buffer, but also managing the
mutual concurrency of several high-level drivers.

Our work focused on providing the driver programmer a reliable low-level layer over which it is
possible to implement a functionality layer to interact with the cores.

4.1 Low-level APIs

The low-level communication with the FPGA is handled by the functions declared in the header
file “Fpgaipm.h”. Such functions are supposed to be called by the high-level driver code, without
having almost any knowledge of the specific hardware implementations and of the details about
the microcontroller and the FPGA provided by SEcube™ .

FPGA_IPM_BOOLEAN FPGA_IPM_init(void)

This function is used to initialize all the data structures needed by the driver and to configure the
required components of the SEcube™ microcontroller. It is mandatory to call it just once at the
beginning of any application code that makes use of the FPGA.

In details, the function:

e configures the FMC peripheral control registers to make it handle accesses to a block of
external asynchronous PSRAM with data width of 16 bits. Address and data setup times
are set as 6 CPU clock cycles long each, both for reading and for writing

e attaches the GPIO to the FMC address, control and data signals

¢ configures the clock input of the FPGA at 60 MHz (1/3 of the CPU clock)

¢ insert in the interrupt vector table the interrupt line coming from the FPGA
¢ initializes a semaphore to resolve concurrency issues between transactions.

ChapterEwiII discuss about the reasons of choices made on setup times and operating frequency.

FPGA_IPM_BOOLEAN FPGA_IPM_open(FPGA_IPM_CORE corelD,
FPGA_IPM_OPCODE opcode, FPGA_IPM BOOLEAN interruptMode,
FPGA _IPM BOOLEAN ack)

This function allows to open a transaction with a core on the FPGA, writing at address 0x00 of the
buffer the control word with the specified parameters.
The following parameters are required:

e corelD: the ID of the required core that will be used. The ID 0 refers to the IP Manager
itself

e opcode: the possible operative code. Depends on the used core

e interruptMode: a boolean indicating the type of transaction: polling (0) or interrupt (1)

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 24 of El]
Document Classification: Public Release: 006

e ack: a boolean that is positive when a transaction is answering to the interrupt request
from a core.

Opening a transaction is possible only if there are no active transactions. Any other transaction is
blocked by the software semaphore. The procedure to open a transaction follows these steps:

1. Check if the transaction can be established: if not, the request is rejected
2. Lock the resource (FPGA) by decrementing the semaphore

3. Update control variables to the new values

4. Perform a write operation at address 0x00 of the buffer

5. Send a positive response to the calling function if everything went fine.

FPGA_IPM_BOOLEAN FPGA_IPM_read(FPGA_IPM_CORE corelD,
FPGA_IPM_ADDRESS address, FPGA_IPM_DATA xdataPtr)

This function is used to read a word from the FPGA buffer.
The following parameters are required:

e corelD: this parameter permits to check if the request is compliant with the current trans-
action (i.e., the active core ID is the same). If there are no transactions opened, the function
returns a negative value

e address: the row of the data buffer from which data is read. The address must be in the
range from 0x01 (1) to Ox3F (63)

e dataPtr: the main memory pointer where the read word is saved.

The function returns a boolean that notifies if the operation was correctly performed.

This procedure is implemented using internally the native function HAL_SRAM_Read_16b(),
which is declared in the library file “stm32fdxx_hal_sram.h”. The function only reads a piece of
SRAM organized in 2-byte words. The automatic interaction with the FMC is possible thank to the
FMC initial settings.

FPGA_IPM_BOOLEAN FPGA_IPM_write(FPGA_IPM_CORE corelD,
FPGA_IPM_ADDRESS address, FPGA_IPM DATA xdataPtr)

This function is used to write a word into the FPGA buffer.
The required parameters are:

e corelD: asthe previous function, this parameter is used to check whether the request can
be performed in base of the presence of an open transaction or not

e address: the memory offset of the FPGA data buffer in which the word is intended to be
stored. Must be in the range from 0x01 (1) to Ox3F (63)

e dataPtr: the main memory pointer that contains the word that is going to be stored in
the FPGA data buffer.

The function returns a value that notifies whether the operation was correctly performed or not.
The procedure is implemented using HAL_SRAM_Write_16b() function declared in the library
file “stm32f4xx_hal_sram.h” that interacts with FMC to send data to the FPGA.

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 25 of@
Document Classification: Public Release: 006

FPGA_IPM_BOOLEAN FPGA_IPM_close(FPGA_IPM_CORE corelID)

This function is used to close a transaction with the FPGA by just complementing the B_E bit
in the control word written at address 0x00. The only parameter that has to be specified is the
corresponding IP core ID, that is used to verify if the closing request is compliant with the previous
actions.

Closing a transaction releases the FPGA resources for the transactions.

4.2 FPGA interrupt handler

As presented, FPGA_IPM_init() also inserts in the interrupt sensitivity list of the processor
the pin PA9, which is attached to the global interrupt line of the FPGA. The function void
EXTI9_ 5 IRQHandler(void) presentin “Fpgaipm.c” is the interrupt service routine automat-
ically called when the FPGA interrupts the CPU. Once entered, the CPU effectively controls if the
interrupt flag is set, then performs its operations and finally clears such flag. The body of this
routine isEto be customized depending on the cores present in the FPGA, this will be discussed in
Chapter 6.

4.3 Concurrency issues

Concurrency is a big concern that may affect the correct behaviour of the system if not correctly
managed. As we said, the management is operated through the implementation of a semaphore
inside the driver that allows the execution of one and one only transaction at the time. The
semaphore is managed by:

e FPGA_IPM_init(), thatinitializes it

e FPGA_IPM open(), that checks the value of the semaphore. In case the resource is un-
locked, the function zeroes the semaphore and allows the beginning of the current trans-
action. Otherwise, the function immediately returns with an error

e FPGA_IPM close(), that increments the semaphore releasing the resource if and only if
there is an active transaction and the caller of the function is the caller that has opened the
active transaction.

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 26 of@
Document Classification: Public Release: 006

5 User Manual

This Chapter is intended to explain you how to build your own application to be run on SEcube™
DevKit exploiting the communication between the CPU and the possible FPGA hardware accel-
erators with a step-by-step description of the required actions. A complete project involves the
customization of both sides: by the microcontroller side, an opportune firmware must be written,
that makes use of a combination of the STMicroelectronics™ standard APIs and of the dedicate
APIs for interacting with the customized hardware; by the FPGA side, the HDL description of the
IP cores must be deployed and synthetized, paying attention to the respect of the protocol and of
the physical interface restrictions already described.

5.1 The SEcube™ System Setup

In this Section, we outline the set of both hardware and software resources you need to set up
the SEcube™ DevKit.
At the end of this Section, you will have acquired a clear overview of the prerequisites to set up
the environment.
5.1.1 Hardware resources
The following hardware resources are needed (detailed in the following paragraphs):

1. APC

2. The SEcube™ Open SDK

3. The SEcube™ DevKit

You do not need a particularly new or powerful PC to get started with the SEcube™ DevKit. Mini-
mal requirements include:

« 2+ GiBd of RAM
¢ 10+ GiB of empty/available space on HDD
e USB ports

To program the STM32F429 processor available on the SEcube™ DevKit you can follow two alter-
natives, resorting to:

* an in-circuit programmer and debugger, and particularly to the ST—Link/VZE,

¢ one board such as the STM Discovery or STM Nucleo, equipped with a ST-Link/v2 program-
mer, respectively.

The ST-LINK/V2 is an in-circuit debugger and programmer for the STM8 and STM32 microcon-
troller families. Its JTAG/serial wire debugging-programming (SWD) interface is used to commu-
nicate with the STM32 microcontroller comprised within the SEcube™ DevKit. This programmer
requires 5V power supplied by a standard USB connector (A to Mini-B cable) compatible with the
USB 2.0 interface. We suggest getting the programmer through RSE, at a price of 19.19 €. Your
purchase should comprise the following items (Figure @):

e The St-Link/v2 programmer

3For the purpose of this document 1 GiB = 2% Bytes
*http://www.st.com/en/development-tools/st-link-v2.html
®http://it.rs-online.com/web/p/kit-di-sviluppo-per-processori-e-microcontrollori/7141701/?sra=pmpn

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

http://www.st.com/en/development-tools/st-link-v2.html
http://it.rs-online.com/web/p/kit-di-sviluppo-per-processori-e-microcontrollori/7141701/?sra=pmpn

IP-core Manager for FPGA-based design on SEcube™ Page 27 of @
Document Classification: Public Release: 006

e USB 2.0 A to Mini-B cable
e JTAG to SWD cable

e SWIM cable (not needed to program the SEcube™ DevKit)

Figure 16: Components purchased with the ST-Link/v2 programmer

The ST Discovery and ST Nucleo boards represent an affordable and flexible way for users to build
project with a microcontroller from the STM32 family, choosing from the various combinations
of performance, power consumption and features.

These boards do not require any separate probe as they both integrate a ST-Link/V2 program-
mer/debugger.

The STM32 Nucleo board comes with the STM32 comprehensive software HAL library together
with various packaged software examples, as well as direct access to online resources. We sug-
gest getting the boards through RS. It is important to clarify that you do not need to buy them
both: you can buy only one board, and your purchase will in any case represent a valid alternative
to the ST-Link/v2 programmer.

The recommended Discoveryt and NucleoE boards can both be bought through RS. In both cases,
you should get the board with a USB 2.0 A to Mini-B cable.

The SEcube™ DevKit can be ordered onIineE.

Your purchase should comprise the following items, depicted in Figure @:

e The SEcube™ DevKit;

e A USB 2.0 A to Micro-B cable

®http://it.rs-online.com/web/p/kit-di-sviluppo-per-processori-e-microcontrollori/9107951/
"http://it.rs-online.com/web/p/kit-di-sviluppo-per-processori-e-microcontrollori/8029425/
8http://www.secube.eu

W

%
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

http://it.rs-online.com/web/p/kit-di-sviluppo-per-processori-e-microcontrollori/9107951/
http://it.rs-online.com/web/p/kit-di-sviluppo-per-processori-e-microcontrollori/8029425/
http://www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 28 of EI
Document Classification: Public Release: 006

Figure 17: Components purchased with the SEcube™ DevKit

In order to make the DevKit work properly, you should also purchase a MicroSD card with a min-
imum capacity of 4 GiB. The card must then be inserted in the dedicate socket (J4002).

5.1.2 Software resources

You need the following tools:
1. Operating System
2. Java Runtime Environment
3. Eclipse
4. AC6 Tools: GNU ARM Embedded Toolchain
5. STM32CubeMX - STM32Cube initialization code generator
6. Lattice Diamond Software
7. ST-Link/v2 drivers
8. ST-Link Utility
9. Open Source SDK
Two Operating Systems are currently supported:
e Windows 7 (or Iater)E

e Linux with Kernel 2.6 (or Iater)E

This procedure has been tested with Windows 7 Professional x64
This procedure has been tested with both Linux Chakra kernel 4.5.7-1 x64 and Linux Ubuntu 14.04LTS x64

H
o
be, PG
. SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 29 of @
Document Classification: Public Release: 006

The Java Runtime Environment (JRE) is a software package that contains what is required to run
aJava program. It includes a Java Virtual Machine implementation together with an implementa-
tion of the Java Class Library. The Oracle Corporation, which owns the Java trade-mark, distributes
a Java Runtime environment with their Java Virtual Machine called HotSpot.

Version Required

Version 8ul11 (or later)

How to get it

The program is available free of charge from the Oracle websiteﬂ.

Installation hints

Visit the download link and follow the instructions as in the following screenshot:

I _
Accept the license w. ~ForWindows 0S8 .. .,

select the .exe O
agreement and select the 2| .
download link depending installer download At the end of

on the target operating . link .+ the download
system i oo ~ = process, launch
.. the installer to
e wsens 2 install JRE

Acrepeioenns Sqresmew § [wcime |icrras dgreemans & Fon
Tockeci | il Cescripnon Filr Siaw Townicac # Litr i

T

What is going to be used for
The Java Runtime Environment is required for Eclipse to work properly.

Eclipse is of the most widely used free and open-source integrated development environment
(IDE) in computer programming.

It contains a base workspace and an extensible plug-in system for customizing the environment.
Eclipse is written mostly in Java and its primary use is for developing Java applications, but it may
be used to develop applications in other programming languages as well, resorting to dedicated
plugins.

Version required

Version 4.6 Neon (or later)

How to get it

You need to download the Eclipse IDE for C/C++ Developers@.

Installation hints

Visit the download link and follow the indications of the website to download the correct version.
Pay attention to choose the same architecture (32-bit or 64-bit) for both Eclipse and the Java
Virtual Machine in your PC. You can verify which version of Java is present in your machine by
launching the command “java -version” in a Command Prompt: its outcome would clearly state
if the Java version within your PC is a 64-bit architecture (otherwise you should assume that it is
a 32-bit architecture).

If the two architectures do not match, it is possible that Eclipse will show this error on startup:
“Can’t start Eclipse - Java was started but returned exit code=13".

Hhttp://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
2https://www.eclipse.org/downloads/

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.eclipse.org/downloads/

IP-core Manager for FPGA-based design on SEcube™ Page 30 of EI
Document Classification: Public Release: 006

What it’s going to be used for
Eclipse is the recommended IDE to develop applications that will run on the STM32F429 proces-
sor of the SEcube™ DevKit.

The AC6 Tool will install the GNU Embedded Toolchain for ARM, which is a ready-to-use, open
source suite of tools for C, C++ and Assembly programming targeting ARM Cortex-M and Cortex-R
family of processors. It includes the GNU Compiler (GCC) and is available free of charge directly
from ARM for embedded software development on both Windows and Linux operating systems.
The reference platform for this document is the System Workbench for STM32 (SW4STM32) Eclipse

plugin.
SW4STM32 is an integrated environment that includes:

¢ Building tools (GCC-based ARM cross compiler, assembler and linker);
e OpenOCD and GDB debugging tools;
¢ Flash programming tools

Version required

Version 5.0 (or later).

How to get it

To install SW4STM32 as an Eclipse plugin:

1. launch Eclipse IDE
2. on the toolbar, click «Help » Install New Software...»

3. in the Available Software window, click «Add»

o Install [e S
Available Software
Select a site or enter the location of 2 site. \Dl—
. 8 =
Work with: - Add...
Find more software by working with the "Avzilable Software Sites” preferences.
type filter text

|
MName Version
[C] (@) There is no site selected.

Select All | [Deselect Al
Details
Show only the latest versions of available software Hide items that are already installed
Group items by category What is already installed?

[] Show only software applicable to target environment
Contact all update sites during install to find required software

® < Back Nexdt > Finish

< E
50“’”'
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 31 of@
Document Classification: Public Release: 006

4. inthe Add Repository window, set Name and Location fields as follows, and then click «OK»

¢ Name: System Workbench for STM32 - Bare Machine edition

¢ Location: http://www.ac6-tools.com/Eclipse-updates/org.openstm32.system-workbench.site

5. select OpenSTM32 Tools and click «Next»

6. accept the license agreement and click «Finish» to start the plugin installation, continue the
installation also if a warning for incompatible or unsigned components is prompted

7. restart Eclipse

What it’s going to be used for
The toolchain will be used to create, build, debug and in general to manage project that will be
executed from the STM32 microcontroller comprised within the SEcube™ DevKit.

STM32CubeMX is a graphical software configuration tool that allows generating C initialization
code using graphical wizards. It also embeds a comprehensive software platform, delivered per
series. This platform includes the STM32Cube HAL (an STM32 abstraction layer embedded soft-
ware, ensuring maximized portability across STM32 portfolio), plus a consistent set of middleware
components (RTOS, USB, TCP/IP and graphics). All embedded software utilities come with a full
set of examples.

STM32CubeMX is an extension of the existing MicroXplorer tool. It is a graphical tool that allows
configuring STM32 microcontrollers very easily and generating the corresponding initialization C
code through a step-by-step process.

The reference platform for this document is the STM32CubeMX Eclipse plugin.

Version required

Version 4.0 (or later)

How to get it

The software is downloadable free of charge onlineld,

After having registered to the website, it will be possible to download a .zip file containing the
STM32CubeMX Eclipse plugin; to install it then follow these steps:

1. launch Eclipse IDE
2. on the toolbar, click «Help » Install New Software...»
3. in the Available Software window, click «Add»

4. in the Add Repository window click on «Archive», select the downloaded ZIP file, and click
«OK»

5. check the box corresponding to STM32CubeMX plugin and click «Next»

6. accept the license agreement to install the plugin, continue the installation also if a warning
for incompatible or unsigned components is prompted

7. restart Eclipse

Bhttp://www.st.com/en/development-tools/stsw-stm32095.html! As an alternative (not recommended), it is pos-
sible to install the software as a standalone by downloading and extracting the .zip file downloadable from
http://www.st.com/en/development-tools/stm32cubemx.html. If you work under Windows, you can execute di-
rectly the .exe executable; if you work under Linux, you have the launch the following command from the command
prompt “sudo java -jar filename.exe” (substituting “filename” with the actual file-name of the executable) and to
insert your user password if required.

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

http://www.st.com/en/development-tools/stsw-stm32095.html.

IP-core Manager for FPGA-based design on SEcube™ Page 32 of@
Document Classification: Public Release: 006

What it’s going to be used for
STM32CubeMX eases system development providing:

¢ C code generation covering initialization code for standard toolchains

e Embedded software libraries and middleware components (e.g., Open-source TCP/IP stack,
USB drivers, open-source FAT file system, open source RTOS) with related examples

Lattice Diamond® software is the leading-edge software design environment for cost-sensitive,
low-power Lattice FPGA architectures. Lattice Diamond’s integrated tool environment provides
a modern, comprehensive user interface for controlling the Lattice Semiconductor FPGA imple-
mentation process.

Version required

Version 3.5 (or later)

How to get it

The software is downloadable free of charge online,

Installation hints

When downloading the software, it is possible to choose the free license.

What it’s going to be used for

The software will be used for controlling the implementation process of the Lattice Semiconduc-
tor FPGA comprised within the SEcube™ DevKit.

ST-Link v2 drivers provide support for the ST-Link/v2 programmer.

Version required

Version 4.0.0 (or later)

How to get it

The software is downloadable free of charge onlinels,

Installation hints

During the installation procedure, it is possible to receive warnings from the Operating System if
drivers are not properly signed; however, the installation procedure should not be interrupted.
What it’s going to be used for

To allow the usage of the ST-Link/v2 programmer.

The STM32 ST-LINK Utility software facilitates fast in-system programming of the STM32 micro-
controller families in development environments via the ST-LINK and ST-LINK/V2 tools.

Version required

Version 4.0.0 (or later)

How to get it

The software is downloadable free of charge online for Windows usersid,

Linux user, instead, can resort to the Open On-Chip Debugger (OpenOCD); this software is down-
loadable free of charge onlineld,

What it’s going to be used for

To speed up the usage of the ST-Link/v2 programmer.

A Software Development Kit (SDK or "devkit”) is typically a set of software development tools
that allows the creation of applications for a given system. To exploit all the functionalities of

¥http://www.latticesemi.com/Products/DesignSoftwareAndIP/FPGAandLDS/LatticeDiamond

Bhttp://www.st.com/content/st_com/en/products/embedded-software/development-tool-software/
stsw-1ink009.htm|

Bhttp://www.st.com/content/st_com/en/products/embedded-software/development-tool-software/
stsw-1link004.htm|

Yhttps://sourceforge.net/projects/openocd/files/openocd/0.9.0/

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

http://www.latticesemi.com/Products/DesignSoftwareAndIP/FPGAandLDS/LatticeDiamond
http://www.st.com/content/st_com/en/products/embedded-software/development-tool-software/stsw-link009.html
http://www.st.com/content/st_com/en/products/embedded-software/development-tool-software/stsw-link009.html
http://www.st.com/content/st_com/en/products/embedded-software/development-tool-software/stsw-link004.html
http://www.st.com/content/st_com/en/products/embedded-software/development-tool-software/stsw-link004.html
https://sourceforge.net/projects/openocd/files/openocd/0.9.0/

IP-core Manager for FPGA-based design on SEcube™ Page 33 of@
Document Classification: Public Release: 006

your SEcube™ DevKit, we provide a free and open-source SDK which are commented in this doc-
ument.

Of relevance within this SDK is a configuration file (“SEcubeDevBoard.ioc”) which stores the con-
figuration of microprocessor integrated in the SEcube™ DevKit.

How to get it

This file is available as part of the Open Source SDK which can be downloaded from the follow-
ing link: https://www.secube.eu/resources/open-sources-sdk/. Once downloaded, extract the
contentinto a known location, and keep extracting subarchives until you are able to browse to “SE-
CubeSDK/SDK device side/code/optimized_apis_firmware_nonblockinglogin/secube_sdk/development”
to find “SEcubeDevBoard.ioc”.

What it’s going to be used for

The configuration file is used to generate automatically software driver and or custom configura-
tions tailored for the microprocessor integrated in the SEcube™ DevKit.

5.1.3 Assembling the System

In this Section, we list the instructions you need to follow to properly connect the SEcube™ DevKit
to the Host PC and to Programmer/debugger, as shown in Figure @

At the end of this Section you will have acquired a clear overview of the procedures to follow to
start using the environment.

usB ST-Link/v2
Host PC <:> Programmer-
Debugger
USB ’_/J;AG/SWD
Target

SEcube DevKit

Figure 18: System Architecture

5.1.4 Assembling Steps

If you decide to use the ST-Link/v2 programmer, assembling is composed of the following two
steps:

1. Connect the SEcube™ DevKit with the programmer by means of the JTAG/SWD cable: the
cable should be inserted on the JTAG docks on both the programmer (in this case the ori-
entation of the plug is forced from the dock) and the DevKit (in this case you must pay
attention in inserting the plug on top of both lines of connectors and with its protrusion
oriented towards the inner side of the DevKit)

2. Connect the ST-Link/v2 with the PC by means of the USB cable

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

https://www.secube.eu/resources/open-sources-sdk/

IP-core Manager for FPGA-based design on SEcube™ Page 34 of EI
Document Classification: Public Release: 006

The system assembled is shown in Figure @, while a close-up on the JTAG connection is in Figure

Rd.

Figure 19: Connection between the STLink/v2 programmer and the SEcube™ DevKit

Figure 20: Connection between the STLink/v2 programmer and the SEcube™ DevKit, close-up
(highlighted in red) on the JTAG connector orientation

If you decide to use the ST-Link programmer comprised within a Discovery or Nucleo board, as-
sembling requires the following three steps:

1. Isolate the programmer from the rest of the board by moving the jumpers to reach the con-
figuration shown in Figure @ and described in the STM32 Nucleo-64 boards user manuall@

8 Available at the following link, please refer to Section 6.2.4 of the User Manual of the STM32 Nucleo board: https://

W

L i
50“’”"
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

https://www.st.com/content/ccc/resource/technical/document/user_manual/98/2e/fa/4b/e0/82/43/b7/DM00105823.pdf/files/DM00105823.pdf/jcr:content/translations/en.DM00105823.pdf#page=18&zoom=100,0,652
https://www.st.com/content/ccc/resource/technical/document/user_manual/98/2e/fa/4b/e0/82/43/b7/DM00105823.pdf/files/DM00105823.pdf/jcr:content/translations/en.DM00105823.pdf#page=18&zoom=100,0,652

IP-core Manager for FPGA-based design on SEcube™ Page 35 of 61
Document Classification: Public Release: 006

2. Connect the SEcube™ DevKit with the programmer by means of the JTAG/SWD cable: the
cable should be inserted on the JTAG docks of the DevKit (you must pay attention in inserting
the plug with its protrusion oriented towards the inner side of the DevKit) and on the SWD
dock of the board, accordingly to the schema in Figure @

3. Connect the ST-Link/v2 with the PC by means of the USB cable.

Pin CN4 Designation

1 vDD Target VDD from application
2 SWCLK SWD clock

3 GND Ground

4 SWDIO SWD data I/O

5 NRST Reset of target MCU

6 SWO Reserved

Figure 21: Programmer SWD pins schema

www.st.com/content/ccc/resource/technical/document/user_manual/98/2e/fa/4b/e0/82/43/b7/DM00105823.
pdf/files/DM00105823.pdf/jcr:content/translations/en.DM00105823.pdf#page=18&zo0om=100,0,652

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

https://www.st.com/content/ccc/resource/technical/document/user_manual/98/2e/fa/4b/e0/82/43/b7/DM00105823.pdf/files/DM00105823.pdf/jcr:content/translations/en.DM00105823.pdf#page=18&zoom=100,0,652

IP-core Manager for FPGA-based design on SEcube™ Page 36 of@
Document Classification: Public Release: 006

Figure 22: Jumpers configuration to isolate the ST-Link programmer on a Discovery board (high-
lighted in red, the same applies to Nucleo boards)

Figure 23: Connection between the Discovery board and the DevKit (the same applies to Nucleo
boards)

5.1.5 What it should happen

After having properly connected the programmer through the USB interface its signaling LED
should turn on; after having properly connected the DevKit through the USB interface all its LEDs

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 37 of@
Document Classification: Public Release: 006

should turn on.

5.2 C/C++ Project

In this Section, we list the instructions you need to follow to import the SEcube™ software libraries
within an Eclipse project.

At the end of this Section you will have acquired a clear overview of the procedures to follow to
import the libraries and use them to foster the development of your application.

5.2.1 SEcube™ Open Source Software Libraries - Device Side

Hereby is listed a step-by-step guide to create the binaries files that will be executed on the
SEcube™ DevKit:

1. Download the SDK package containing the project from https://www.secube.eu/resources/
open-sources-sdk/

2. Extract the .zip file to a known location
3. Openthefolder”SEcube SDK_v1.4 1” and extract the content of the archive "SECubeSDK.tar.gz"

4. From your location, go to ”"SECubeSDK/SDK device side/code” and extract the content of
the archive "optimized_apis_firmware_nonblockinglogin.zip”

5. Open the folder “optimized_apis_firmware_nonblockinglogin” and extract the content of
the archive “secube_sdk.zip”

6. Fromyour location, go to "secube_sdk/development” and extract the content of the archive
"environment.zip”

7. Launch Eclipse

8. Change Eclipse perspective to «C/C++ selecting Window » Perspective » Open Perspective
» Other... » C/C++»

9. Switch the Eclipse workspace to «File » Switch Workspace » Other...» and select the “ws”
folder contained within the “environment” folder previously extracted from the .zip file

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

https://www.secube.eu/resources/open-sources-sdk/
https://www.secube.eu/resources/open-sources-sdk/

IP-core Manager for FPGA-based design on SEcube™ Page 38 of EI
Document Classification: Public Release: 006

Edit Mavigate Search Project Run GraphModel Window Help

New Alt+Shift+N » - - -
Open File...
¥
Close Ctrl+W
Close All Ctrl+Shift+ W
Cirl+5
H
v Ctrl+Shift+5
Revert
Move...
r_,-f Rename... F2
#| Refresh F5
Convert Line Delimiters To L
Print... Ctri+P
Switch Workspace » C\Users\kopetzkivdime\workspace
Restart C:\Users\kopetzkitwin32.win32.x86_64\dime\workspace
g Import.. Other...
g Export...
Properties Alt+Enter

1 secure_receive.process [SElink]

2 SerialCallbackFunction.process [Loo..]

3 SerialNode.process [Looqui_D06/models]

4 ManageQOutputModes.process [Looqui (..]

Exit

10. Set the Debug configuration from «Project » Build Configuration » Set Active»

File Edit Source Refacto gate Search n Window Help

= | &~&~minig=-a ec M- e P E NG AR T S o b Quick Access | [| [ECIGe=) 4 Debug
B ProjectEplorer 21 B B[® T =| B =08 | o » Ta. =8
4 (2% SEcubeDevBoard R ST = BlRa e ¥%|e v
> €2 inaries Build Configurations » Set Active +| v 1Debug u =
b &) Includes Build Project Manage.. | 2Relesse o adch F
4 (= Application i : T [l A
i Crliass ki Build by Working Set » _J o
g 8 dmah
» (= Common : Set Active by Working Set 0 2eh
> @ Device P Manage Working Ses... 4 mgh
> %ajg: ey q | 2 sdioh
[sdc. 2 spih
> [crec C/C++ Index » 3 o timh L
5 D erch configured peripherals */ E PR =
o [dmac Properties 2 usb_deviceh

11. Build the project in Debug mode from «Project » Build All»
12. Set the Release configuration from «Project » Build Configuration » Set Active»
13. Build the project in Release mode from «Project » Build All»

14. Right-click on the project in the Project Explorer and select «Refresh»

W

%
50"’”"
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 39 of EI
Document Classification: Public Release: 006

BRI IOl ol el [e =
@
=1
ey
Q

-

coooroeoo

Ctrl+C
Paste Ctrl+V
Delete

V
]
[}
3
B

X
(=]
m
m
m

Remove from Context Ctrl+ Alt+Shift+ Down

Move...

-~

Rename... F2

Import...

EE

Export...

Refresh F5
Close Project

69

Close Unrelated Projects

Validate

Reinitialize Registry

Debug As 3
Run As 4
Team 3
Cornpare With 3
Restore from Local History...

Configure 4

Source 4

Properties Alt+Enter

15. Connect the DevKit as described in previous section

16. Runthe project by right-clicking on it in the Project Explorer and selecting the Release binary
under «Target » Program Chip» (i.e., select the label containing the string “/Release”)

File Edit Source Refactor Mavigate Search Project Run Window Help

- |@'Q'm‘\:@'ﬁﬁ'5"6"#'0'&'5‘.1%se\mmm,},me . E‘ﬂgl Quick Access | % | [EEC/Cax] 45 Debug
[Project Explorer 32 = <’é‘>| & ¥ ° O [§ startup_stm32i429ocs 53 e = B o A El Ta =g
4 5 SEcubeDevBoard 1dr sp, = estack . Bale <
> 4 Binaries © Reset_Handler
-l opy the data segnent | o | |
> &P e 106 inaries = CopyDatalnit
» ggzﬂ;am” | b LoopCopyDataInit SEcubeDevBoardelf = LoopCopyDatalnit
> = FillZerobss
> G Drivers pe = LoopFillZerobss
b (= Middiewares r 3, = sidsta
:BRE‘E“E el . = Default_Handler
=4 str r3, [r®, r1] © g pinVectors
5/ SEcubeDevBosrd.cfg S T
SEcubeDevBoard.aml
i STM32F429NIkb FLASH.Id LoopCopyDatalnit:
1dr re, = sdata
ldr 3, —edata =
Broblems] Tasks | E) Console ¢l ERE/mB--=0
CDT Build Console [SEcubeDevBoard] |
11:03:55 =*=* Incremental puill|| Qualifiers == Z
:Z:Z_“rﬁthing o be done for || | %5 srmle - /SEcubeDevBosra/Debug/SEcubeDevBoard.ei
) %5 armie - /SEcubeDevBoara/Release/SEcubeDevBoard.ef
11:03:56 Build Finished (took
4| i]+
[7] Reset after program
®

17. Wait until the debugger shows the messages “Programming Finished” and “Verified OK”

W

H
50“’”"
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 40 of @
Document Classification: Public Release: 006

B

File Edit Source Refoctor Mavigate Search Project Run Window Help

- |- Q- @i NGB - -0 Q- V- sl T AT Quick Access B | [Em C/C++ | 3 Debug

[Project Explorer 32 2G| ® Y= O 3 stariupstm32i2s 53 = 0 g Oou. R =0

4 % SEcubeDevBoard 88 1ldr sp, = estack * set stack pointer */ - E lﬂzi & v
> 42 Binaries =L Reset_Handler

rs from flash to SRA

Copy the data segment ir

e
&) Includes e = CopyDatalnit
. (= Application] b LoopCopyDataInit = LoopCopyDatalnit
, (= Debug s © FillZerobss
> (= Drivers & CopyDatalnit: © LoopFillZerobss
. = Middlewares 2 de xd,seaddata = Default_Handler
i 88 ldr r3, [r3, rl] -
= 83 str r3, [r8, r1] © g.pfnVectors
S| SEcubeDevBoard.cfg B8l Gdds) m.ieihad
[SEcubeDevBoard.xml o1 =
W STME2F420NIH_FLASH.Id " Pt
* Problems & Tasks) Console 57 [] Properties LB EE=BlMB-0-=0
CDT Build Console [SEcubeDevBoard]
** Programming Started ** B

auto erase enabled

Info : device id = @x28016419

Info : flash size = 2048kbytes

stm32f4x.cpu: target state: halted

target halted due to breakpoint, current mode: Thread

XPSR: Bx61888800 pc: @x20008846 msp: Bx20001343

wrote 131672 bytes from file Release/SEcubeDevBoard.elf in 5.075290s (25.220 Kib/s)
** programming Finished **

** Verify Started **

stm32fax.cpu: target state: halted

target helted due to breakpoint, current mode: Thread

XPSR: Ox61600668 pc: 0x2608062¢ msp: Ox20081345

stm32f4x.cpu: target state: halted

target halted due to breakpoint, current mode: Thread

xPSR: Bx61888800 pc: @x2008882c msp: Bx20001343 3
verified 74372 bytes in 6.766044s (94.563 KiB/s)

** Verified OK **

shutdown command invoked

11:88:58 Build Finished (took 6s.482ms) =

Now your DevKit is fully configured and the STM32 microprocessor is ready to be used to develop
your security applications.
5.2.2 Running your first program: FPGA_LED (device-side)

The procedure shown in this paragraph guides you to a first example of how to use the Open
Source Libraries with the FPGA; it programs the FPGA embedded in the SEcube™ chip to make
the LEDs blink.

Hereby we list a step-by-step guide to run this program:

1. Import the project as described in section
2. Import the necessary «File » Import...», select “Filesystem” and press “Next”

3. Browse to the directory where the SDK has been downloaded and then to the path “SE-
cube_SDK/Libraries/Examples/TestFPGA/”

4. Select the files in that folder (FPGA.c, FPGA.h and TEST_FPGA.h); you might want to set also
“Destination Folder” to “SEcubeDevBoard/Application/src” and then press “Finish”

W

%
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 41 of EI
Document Classification: Public Release: 006

f B
e Impnrt B S L3
File system

Import resources from the local file system.

HJ

-
From directory: C\Users\Alby\Desktop'Environment\ TestFPGA - Browse..
[= TestFPGA [FPGA.c
i [FPGAK

[C] El README_TestFPGA.bt
[€ TEST_FPGAR

Filter Types.. | [SelectAll | [DesclectAl

Into folder: SEcubeDevBoard/Application/src

Options

[] Overwrite existing resources without warning
[] Create top-level folder

@ Net> | [_Fmsh) [cancel

5. Configure both “Debug” and “Release” configurations from «Project » Properties » C/C++
Build » MCU GCC Compiler » Includes» and add the “Destination folder”

| & Properties for SEcubeDevBoard

type filter text Settings - .- |
= |Eoc)4
© Resource
Builders & Tool Settings | & Build Steps | 7 Build Artifact | & Terget | [} Binary Parsers [@ Error Parsers| 0 @ M. [T
‘ CK;\?\]/M bl 3 MCU Settings Include path - S
ull aniables x - .
& o= nclude paths (1) 2 Folder selection i]
Envirenment 4 5 MCU GCC Compiler ___
o 2 Disect ./../../Drivers/STMB2Fboc HAL Driver/Inc
99ing FA o uf o/ Diivers/STM32Fdioc_ HAL Driver/Inc/Legacy e e I r e LRI
Settings (=2 Preprocessor of wf ofMiddlewares/ST/STM32_USB_Device_Library/Core/Inc
Tool Chain Editor (2 Symbols /o/Middlewares/ST/STM32_USB_Device Library/Class/MSC/Inc b (& RemoteSystemsTempFiles
b C/C++ General 2 Includes S /Drivers/ CMSIS/Include 4 5 SEcubeDevBoard
Linux Tools Path EYe o f o/ Drivers/ CMSIS/Deviee/ST/STM32F4odInclude b & settings
Project References ® | & Add directory path = 4 (= Application
Refactoring Histery & b [E2 sec|
Run/Debug Settings @& || Directory: b SWASTM32
o
b Task Repository “® Z‘C S{workspace_loc:/${ProjNamel/Application/src} & Debug
WikiText & b (= Drivers
& b = Middlewares
& b B> Release
@
B MC [ok][cancel || workspace.. | [Filesystem.
&
®
\

6. Now edit the code in “main.c” file including the header file “FPGA.h”
7. Also in “main.c” add a call to B5_FPGA_Programming() function
8. Open the file named “gpio.c” and add the following lines to the function MX_GPIO Init

(), needed for configuring the JTAG port used for programming the FPGA:

/*Configure GPIO pin : PE2 %/
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO InitStruct.Mode = GPIO_MODE_INPUT;

SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 42 of El]
Document Classification: Public Release: 006

GPIO InitStruct.Pull = GPIO_NOPULL;

HAL_GPIO Init(GPIOE, &GPIO_ InitStruct);

/*Configure GPIO pins : PE3 PE4 PE5 PE6 x*/

GPIO InitStruct.Pin = GPIO_PIN_3|GPIO_PIN_4|GPIO _PIN_5|
GPIO_PIN 6;

GPIO InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

GPIO_InitStruct.Pull GPIO_NOPULL;

GPIO_InitStruct.Speed = GPIO_SPEED_HIGH;

HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);

9. Save the changes to all files and build the project
10. Connect the DevKit as described in previous section

11. Runthe project by right-clicking onitin the Project Explorer and selecting the Release binary
under «Target » Program Chip» (i.e., select the label containing the string “/Release”)

Notice that the after turned on, programming of the FPGA might require some time (1-2 minutes)
to be completed. After that, you should see that the LEDs on the board start blinking.

5.2.3 How to import your own project

At this point, you should have understood how a CPU-FPGA communication project should be
configured. You need the programming library for the FPGA composed by the three files included
in the example before, you need to set the GPIOs of the JTAG port of the FPGA as indicated by
the piece of code in the previous section, and you certainly need a call to the FPGA programming
function in the main(). What is to be substituted are the two huge byte arrays present in the
file “TEST_FPGA.h” with the bitstream containing the information about the pin interface and for
programming internally the FPGA through the JTAG. Such file is generated automatically from your
own HDL description of the FPGA by the Lattice Diamond® Deployment Tool after the synthesis
steps. What you should do is nothing else than replace within the file these two arrays with the
ones generated by this tool, but this will be explained in detail the next section.

Another important setup that you must do in order to interface the FPGA design described by this
project is the import of our API library with the general managing class we created.

5.3 HDL project

In this Section, we list the instructions you need to follow to setup your own set of IP cores and
to import them within the project.

First, you need to download the HDL source files for the data buffer, the IP Manager, the pack-
age containing the constants and the top-entity structural description of the FPGA available on
the download section of the SEcube™ website. For a project that works as specified in this docu-
ment, these sources must be altered only in minimal part as it will be indicated, while all the rest
of the code must be maintained untouched. The group of available files also comprehends an ex-
ample core performing SHA256 algorithm and a relative generic testbench usable for simulation
purposes, but this will be explained in the last Section.

5.3.1 How to create a Lattice Project

Once your IP cores have been developed, tested and validated as working with whatever simula-
tion tool you prefer, the synthesis process must begin. Open Lattice Diamond” and follow these
steps.

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 43 of EI
Document Classification: Public Release: 006

1. Create a new project

Lattice Diamond -

Edit View Project Design Process Tools Window Help

New P TR File. Ctrl+N
Open * B2 Project.. Ctrl+Shift+N
Add 4 Implementation...

s Chrl+F4 Strategy...

Close All

Close Project

H Save Ctrl+5
Save As...
gl saveal Ctrl+Shift+5

Save Project
Save Project As...

Archive Project...
Discard Modified Preferences

Print Preview...

B Print.. Ctrl+P
Recent Files 3
Recent Projects 3
Exit

2. Browse to the location of your HDL project folder and insert an implementation name

s al
Mew Project @lﬂ

Project Name ¢)
Enter a name for your project and specify a directory where the project data files wil ‘.’10
be stored. k4

Project:

Mame: []

Location: C:/Users/Ramon/Desktop/Progetti Lattice/GarzalltimateArena +

Implementation:
Mame: impll &

Location: C:/Users/Ramon Desktop/Progetti Lattice [GarzaUltimateArena fimpl 1

3. Add VHDL source files in this step or inside the project by right clicking on the input files
folder. Remember that files named “CONSTANTS.vhd”, “DATA_BUFFER.vhd”, “IP_MANAGER.vhd”,
“TOP_ENTITY.vhd” must be included, plus your own custom IP cores source files

W

H
50“’”"
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™

Page 44 of EI

Document Classification: Public Release: 006
| # New Project m
Add Source O ._]
Add HDL, EDIF netlist, LPF constraints, or other files, v 0 v

Source files:

Remove Source

Copy source to implementation directory

< Back

| [mext>

) (o

LCMX02-7000HE-5TG144C

Select Device:

Family: Device:
LatticeEC ~ | | LCMXO02-2000HE -
LatticeECP | LCMKO2-2000UHC
LatticeECP2 —| | LCMXO2-2000UHE
LatticeXP LCMX02-2000ZE
LatticeXP2 LCMX02-4000HC .
MachXO LCMXO2-4000HE
MachX02 = | | LCMX02-4000ZE L
MachXO3L LCMX02-7000HC 1
MachXO3LF LCMX02-7000HE 3
Platform Manager || | LCMXO2-T000ZE =
Platform Manager 2 ||

Performance grade:()

Package type:

s

~ | [Torp1a2

Operating conditions:

[Cornmercia]

)

Part Mames:

[LCI‘"‘IXDZ—?UUOO—E—EFG 144C

Select ASC Device:

click “Next”

W

L E
h 50“’”

Device Information:
Voltage:

Lum:

Registers:

EBR Bits:

EBR Blodks:

Dist RAM:

DsP
PLL:
DLL:
PCS
APIO:

PIO Cells:

PIO Pins:

Max Programmable I0s:
VMON Pins:

IMON Pins:

TMON Pins:

Trim/Mar Pins:

HVOUT Pins:
GPIO:

SEcube™ Open Source Hardware and Software Security Oriented Platform

4. Select the correct FPGA model. In this case, the SEcube™ FPGA correct version is MachX02-

L2v
6864
6364
238.6K

54912

5. In the following window you have to select the Synthesis tool used. Select LATTICE LSE and

www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 45 of @

Document Classification: Public Release: 006
New Project l—l—@ X
Select Synthesis Tool @

Specify a synthesis tool for the implementation.

Synthesis Tools:

() Synplify Pro

Precision

@ Lattice LSE More information

[< Back J[Mext =]l Cancel I

6. Open and edit the LPF source file in the section “LPF Constraint File”. This file is used for
I/0 mapping and clock configurations. Reference to our predefined file “FPGA_IPM.Ipf”
that you find along with the other VHDL source files for the correspondence between the
pinout of the FPGA and the top entity ports. You can anyway customize your own LPF file.
Make sure that the frequency constraint is lower or equal than 60 MHz, not to collide with
the software driver settings

7. Save all current changes

W

%
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 46 of EI
Document Classification: Public Release: 006

5.3.2 Synthesis Procedure

1. Go to «Process» tab of the Process Window and select the check marks as in the following.

Process g X

4 2 Synthesize Design
= Lattice Synthesis Engine
a2 Map Design

= Map Trace
+ Verilog Simulation File
[7] 2 VHDL Simulation File
4 o Place & Route Design
[¥] 2 Place & Route Trace
[¥] & /O Timing Analysis
4 2 Export Files
[E1 IBIS Model
Verilog Simulation File
VHDL Simulation File
Bitstream File

JEDEC File

| O [

t

Bttt

HEOOI

File List Process Hierarchy

2. Right-click on “Run” for all the main voices and check if error messages are present in con-
sole

3. Atthe end of all synthesis steps, go to «Tools » Timing Analysis View» and check if there are
no violation for setup and hold times

W

%
5‘7“’”‘
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™
Document Classification: Public

Page 47 of EI
Release: 006

Lattice Diamond - Start Page
File Edit Process

A-R-HIE ey n B
vECAEe Y s oEED

View Project Design Tools Window Help
Spreadsheet View
Package View

Device View

Process
= - - Netlist Analyzer
v %L Synthesize Design -
% Lattice Synthesis Engine Rlet=Re
v % Map Design NCD View
%L Map Trace
|Pexpress

[0 2 Verilog Simulatien File

[] & VHDL Simulation File
~ %L Place & Route Design

"'4,' Place & Route Trace

L 1£0 Timing Analysis
v 2 Export Files

[0 & 18IS Model

[1 2 Verilog Simulatien File

[] & VHDL Simulation File

"'}.,' Bitstream File

% JEDEC File

Reveal Inserter

O
B
B
B
LTS
@

Reveal Analyzer

Floorplan Yiew

Physical View

(3, Timing Analysis View
@ Power Calculator

3: ECO Editor
i.p Programmer

ﬁl SEl Editor

File List Process Hierarchy-—Post Map Resourn
Output &8 Partition Manager
Venc?lor: LATTICE “> Synplify Pro for Lattice
Device: LCMEO2-TO00HE
Package: TQFP144 [Active-HDL Lattice Edition
Performance: 5
Fackage Statua: Fi: Run Manager

Performance Hardware Data Status: Fi
Finish loading physical design informa
Loading logical preference information
Finish loading logical preference info
Loading logical preference information
Finish loading logical preference inio

N &

Simulation Wizard
Clear Tool Memaory

Options...

Loading logical preference information

Finish loading logical preference information

i StartPage Reports 2 FPGA_TPM.Ipf (T Timing Analysis View [£] e
Y Settings Values # | Path Table B X
o Device Family MachX02
B2
==1D LEMXOZ-7000HE Source filter: l:l Destination filter: l:l Case sensitive
@ |Package TQFP144
= Setup Performance G... Default
#5 | Hold Performance Gr... Default Source Destination Weighted Slack Arrival Required Data Delay ™
[l |check Unconstrained . No vl |
Preference Name Analysis Type 2 v
v iE Analysis Results < z
% FREQUENCY 60.000000 MHz ~ setup
% FREQUENCY 60.000000 MHz hold Report [
< >

Preference Reports Other Reports Detailed Path Tables Schematic Path View Report

If times are respected, constraints are written in black. Otherwise, they are written in red.
By clicking on the constraint, on the right it is possible to see details about the violating path

4. If there are no problems, go to «Tools » Programmer»

W

L i
h 50“’”

SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 48 of EI

Document Classification: Public Release: 006
+ Lattice Diamond - Programmer - impiLxct [N
File Edit VWiew Project Design Process | Tools | Window Help
P-ErH g 2 e 23 ¥ |1 Spreadsheet View
CEGEHBRSE G GEEE P
® S:_E Device View
rocess
. Netlist Anal
4 % Synthesize Design E I lna o
Y Lattice Synthesis Engine B Netiist View
4 ¥ Map Design =2 NCD View
L Map Trace
a
[F] 3 Verilog Simulation File L
[[] ¥ VHDL Simulation File i |
4 T Place & Route Design - e
"'4,' Place & Route Trace @ S o
¥ 1o Timing Analysis Floorplan View
a2 Export Files o ; :
] 2 IBIS Model e
[[] & Verilog Simulation File @, Timing Analysis View
[[] ¥ VHDL Simulation File
b Power Calculat
%4 Bitstream File @i ' . ra
%{ JEDEC File R
%G Programmer
5. Select “Create a new blank project” on the appearing window
1. Programmes: Getting Started ? =

Select an Action

) Create a new project from a TTAG scan

Cable: | HW-LISEN-28 i Pk ERSHD E

(®) Create a new blank praject

(_) Open an exicting programmer project

6. Verify the device family and the XCF file name

i MachxO2 LCMKO2-7000HE

7. Check “I/0O Settings” as in figure

Detect Cable

FLASH Erase,Prograrm, Verify

SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 49 of EI
Document Classification: Public Release: 006

I/0 Settings
() Use default IjO settings
@ Use custom IjO settings

INITN pin connected
[T DOME pin connected
[] TRST pin connected

@ SetTRST high
Set TRST low

PROGRAMM pin connected
[7] ispEM pin connected

@ SetispEM high
Set ispEM low

[Debug Mode. ..

8. Save the changes applied. This file is necessary for Deployment Tool

5.3.3 Deployment Tool usage

The Deployment Tool has the aim of converting the XCF file into the array format needed to pro-
gram the FPGA through the microcontroller.

1. First, open the Deployment Tool and create a new project like in the following

| Diamond Deployment Toal - Getting Started ll‘ﬂ—hj
@ Create New Deployment
Function Type: [Ernl::edded System - l
Output File Type: [JTAG 5lim VME Embedded - l
(") Open an Existing Deployment
Recent Files:
OK] [Close

2. Locate the XCF file and click on “Next”

W

%
5‘7mﬂ‘
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™

Page 50 of EI

Document Classification: Public Release: 006
Diamond Deployment Tool- project0.ddt E=NECE X |

File Edit Help

AT H S EE D

Embedded System: JTAG Slim VME Embedded
Step 1 of 4: Select Input File(s)

,_
(=]
o

Input XCF file:

File Mame

Device Family

3. Be sure to check both the marks “Compress VME Data File” and “Convert VME to HEX (.c)

for File-Based Embedded VME” as in figure

Diamond Deployment Tool- project0.ddt*

C=D0=0 * |

File Edit Help

AEH B EE D
Embedded Systenm: JTAG Slim VME Embedded
Step 2 of 4: ITAG Shm VME Embedded Options

Compress VME Data File

Convert VME files to HEX (.c) for File-Based Embedded VME

’ Previous

Mext]

4. Click Next and generate the C files containing the two arrays that will be used to program

the FPGA

5.4 Putting all together

Now that your HDL project is complete, you have to include it in a custom device-side project set

up for working with the FPGA. In order to do that,

1. Import the project as described in section

W

< E
5‘7“’”‘
SEcube™ Open Source Hardware and Software Security Oriented Platform

www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 51 of EI
Document Classification: Public Release: 006

2. Import the necessary «File » Import...», select “Filesystem” and press “Next”

3. Browse to the directory where the API libraries for the CPU-FPGA communication and the
additional ST libraries for the CPU are located

4. Selectthefilesinthatfolder (“FPGA.c”, “FPGA.h”, “TEST_FPGA.h”, “Fpgaipm.c”, “Fpgaipm.h”,
“misc.c”, “misc.h”, “stm32f4xx_exti.c”, “stm32f4xx_exti.h”, “stm32faxx_syscfg.c”, “stm32faxx_syscfg.h”);
you might want to set also “Destination Folder” to “SEcubeDevBoard/Application/src” and

then press “Finish”

£ Import O b4

File system

Import resources from the local fil

From directory:

e

Filter Types... Select All Deselect All
Application/src

“

5. Configure both “Debug” and “Release” configurations from «Project » Properties » C/C++
Build » MCU GCC Compiler » Includes» and add the “Destination folder”

< E
50“’”"
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 52 of @
Document Classification: Public Release: 006

& Properties far SEcubeDevBoard = NN 1 =11 < |

type filter text Settings - v v g
| B | [)%
. Resource
Builders & Tool Settings | & Build Steps | 1 Build Artifact | & Terget | [i) Binary Parsers | @ Error Parsers| b
4 C/Ce+ Build ‘ e e
Build Variabl 2 MCU Settings 5 - = N
uild Variables] 9= Include paths (-] & Folder selection (B =
Environment 4 1) MCU GCC Compiler - .
L B Disect /.J./Drivers/STNE2Fdcc HAL Driver/Inc
99ing = | /STM32F4ox HAL Driver/Inc/Legacy Select one or more Warkspace Folders
Settings (2 Preprocessor iddlewares/ST/STM32_USB_Device_Library/Core/Inc
Tool Chain Editor (2 symbols iddlewares/ST/STM32_US8_Device Library/Class/MSC/inc | | | » (& RemoteSystemsTempFiles
. C/Ces Geners! & Includes rivers/ CMSIS/Include 4 (5 SEcubeDevBosrd
LinweTools Path ® Q rivers/CMSIS/Device/ST/STM32FéndInclude . = scttings
Project References (| & Add directory path = 4 (= Application
Refactoring Histery [> [see
Run/Debug Settings 1| Directory: | (= SWASTMZ2
, Task Repository 4 MO o kspace loc/S{ProjNamey Application/src} & Debug
WikiText i3 > (= Drivers
i) s > Middlewares
[s (= Release
&
4 B Mc ok | [cancel || Workspace.. | [Filesystem.
&
6. Browse on synthetized HDL project folder, check the presence of the .c files with name end-

10.

11.

ing with “_algo.c” and “_data.c”. These files are containing the two arrays, gpucAlgoArray
[] and gpucDataArray|[] that must be substituted in the file “TEST_FPGA.h” already in-
cluded in the project, thus substituting the two already present arrays

. Copy the content of these two arrays in the corresponding arrays __ fpga_algand __ fpga_data

of “TEST_FPGA.h”. In file “FPGA.c”, values of giAlgoSize and giDataSize must be sub-
stituted with the one written respectively at the top of the two files generated by the HDL
synthesizer

Open the file named “gpio.c” and add the following lines to the function MX_GPIO_Init
(), needed for configuring the JTAG port used for programming the FPGA:

/*Configure GPIO pin : PE2 %/
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO InitStruct.Mode = GPIO_MODE_ INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO Init(GPIOE, &GPIO _InitStruct);
/*Configure GPIO pins : PE3 PE4 PE5 PE6 x*/
GPIO_InitStruct.Pin = GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5|
GPIO_PIN 6;
GPIO_InitStruct.Mode GPIO_MODE_OUTPUT_PP;
GPIO InitStruct.Pull GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_HIGH;
HAL GPIO Init(GPIOE, &GPIO InitStruct);

Now edit the code in “main.c” file including the header files “FPGA.h” and “Fpgaipm.h”

Alsoin “main.c” add a call to FPGA_IPM_init () alongwith the MX_ initialization functions
for the microcontroller modules. Make sure that MX_GPIO Init() is called before it, and
delete (if present) the call to MX_FMC_Init(), as it collides with the FMC initialization
settings already contained in FPGA_IPM init()

Also in “main.c” add a call to B5_FPGA_Programming() function, and before starting to
use the APIs to interface with the FPGA, be sure that it is brought to a reset state through
adding the two following lines:

W

%
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 53 of@
Document Classification: Public Release: 006

12.

13.

14.

15.

16.

17.

18.

HAL_GPIO WritePin(GPIOG, FPGA_RST_Pin, GPIO_PIN SET);
HAL_GPIO WritePin(GPIOG, FPGA_RST_Pin, GPIO _PIN RESET);

which have the aim of resetting the whole FPGA

Open the “stm32fxx_hal_conf.h” and uncomment the two definesHAL_SRAM_MODULE_ENABLED
and HAL_RTC_MODULE_ENABLED

Go to «File » Import...», select “Filesystem” and press “Next”

Browse to the directory where the SDK has been downloaded and then to the path “/se-
cube_sdk/development/environment/drivers/stm32f4xx_hal_driver/Src”

Select the file “stm32f4xx_hal_sram.c” in that folder; you might want to set also “Destina-
tion Folder” to “SEcubeDevBoard/Drivers/STM32F4xx_HAL_Driver” and then press “Finish”

Save the changes to all files and build the project
Connect the DevKit as described in previous section

Run the project by right-clicking on it in the Project Explorer and selecting the Release binary
under «Target » Program Chip» (i.e., select the label containing the string “/Release”)

Remember that at startup, all the LEDs of the SEcube™ DevKit are in a weak pullup state which
indicates that the programming is advancing. After the programming (that may last up to 2 min-
utes) the LEDs are set on or off or left in the same state depending on what is stated by the HDL
code and the connection done through the LPF file: all the LEDs are in control of the FPGA, as it
will be explained in the next Chapter.

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 54 of El]
Document Classification: Public Release: 006

6 Technical Guidelines

This section wants to give some guidelines for future hardware/software developers within this
project, with reference to technical details of our work.

6.1 Hardware design guidelines

As already mentioned, the IP cores can be designed in whatever way internally but must follow
some fundamental rules.

First of all, since the communication protocol reckons on enable, acknowledgment and strobe
signals for notifying the end of some activity by the CPU, and their activation is distributed over
time, the block must be sequential. A combinational IP core is not feasible for this project.

The external interface of the cores as presented in Section must not be modified in any
way to guarantee the correct behaviour during the communication. The IP Manager is thought
to control this and only this interface with the generic core, so if for example the opcode field or
the interrupt/polling bit are deemed unnecessary, or the ack and the interrupt lines are not used
since the core is thought to work only in polling mode, the ports must be only ignored or kept
stuck at given values, but never dropped.

Modifications that do not involve any change in the communication interface with the CPU but,
for example, are intended to add ports to drive other I/O pins of the FPGA, the LED (as explained
soon) or to read the buttons are instead allowed. The information about the physical connection
gthe I/0 pins of the FPGA are reported at the bottom of the general documentation of SEcube™

All the cores are fed with the global FPGA clock and reset signals coming from the CPU. When
the reset arrives, all the blocks of the design are reset, so the FPGA as a whole is reset, as well
as when the clock is suspended by the CPU, the entire FPGA stops. There is no way to gate or
control these two signals for the cores through the manager using some special command for the
Manager or something. The signals can only be managed internally by the custom description of
the core, but this is an unsafe and not recommended solution.

The typical IP core should be structured internally as an FSM with datapath (FSM-D) that performs
a given algorithm. It usually remains in an IDLE state until the enable signal arrives. This signal
unlocks the machine. The core acquires the information about the type of transaction (interrupt
or polling) and the operative code transmitted by the CPU, and usually moves to a reading state,
in which it waits for the write completed strobe signal before addressing the buffer and read the
inputs. Once read the last input, the core starts doing its job.

The computation may take an undefined number of clock cycles. The CPU can wait a precise num-
ber of clock cycles knowing the clock frequency the FPGA is fed with, but this choice is always not
recommended for the possible indeterministic delay that can affect the computation. Usually,
either the CPU polls a register waiting for the end of the work or it closes the transaction and
waits for an interrupt request continuing its operations.

During the computation phase in interrupt mode, the core is not enabled to read the buffer. It is
instead enabled to do it in a polling transaction, but the idea is that the buffer should not be used
as a RAM by the core, which implements its own internal block of storage if required. The buffer
is only left for exchange of inputs and outputs.

Once the algorithm is executed, either the core is still enabled, and so it writes its input on the
buffer before unlocking the CPU stuck on the polled register, or it signals the Manager with rising
its interrupt line. The request is forwarded to the CPU when possible, as we said, and after a
certain time it is acknowledged.

Bhttps://www.secube.eu/site/assets/files/1152/secube_sdk wiki - rel 008 190403.pdf, Appendix B - SEcube™
DevKit Schematics

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

https://www.secube.eu/site/assets/files/1152/secube_sdk_wiki_-_rel_008_190403.pdf

IP-core Manager for FPGA-based design on SEcube™ Page 55 ofEl]
Document Classification: Public Release: 006

The IP core thus receives an enable signal along with the ACK, and its machine is unlocked. The
access to the buffer is granted and now the core can start writing its outputs. Here a debate can
be born on the CPU synchronization: after having started the ACK transaction, when is the CPU
enabled to read the buffer? Some time is surely required to fill the buffer with the results, and
there is no inverse strobe from FPGA to CPU to say that some write operation has been done.

In the normal case, a further polling solution is considered as philosophically incorrect, but the
core can be designed to clear a row in the buffer and to oblige the CPU to poll that area until the
writing is not ended. Considering the different temporization between the CPU and the FPGA this
is a not recommended solution, which is preferably substituted by a sleep time after the ISR call,
as the next section will explain.

For the limited dimensions of the FPGA mounted on the SEcube™ DevKit and consequently of
the data buffer implemented in the project, a core should be not designed for reading instruc-
tions as input, even if this solution is exploited in many coprocessor examples on FPGA. The field
for the operative code left in the command word can somehow try to overcome this problem, al-
lowing the possibility of designing a core in a flexible way, with the ability of executing more than
one program on the inputs stored in the buffer. Although, it is to be remarked that the SEcube™
FPGA is not a large device, 7000 LUTs are barely sufficient to host the buffer, the Manager and
two or three simple cores, so mounting up a complex and flexible hardware may lead to have an
extra-occupancy.

Alternatively, a little microcode memory can be inserted in the RTL of the core and changed with
redesign process or even at runtime exploiting the limited resources available. However again,
there may be no enough space for writing a program for a core using the LUTs or the distributed
RAM as code memory.

The IP cores inserted in the design may be of whatever type, not only accelerators for common
algorithms which require parallelism enhancements. Especially in the embedded domain, the
FPGA can be exploited to implement memory controllers for external memories or even periph-
eral controllers. The 47 general-purpose pins present in the external interface of the FPGA have
been made available right for this scope. In such scenarios, transactions are aimed at sending or
receiving data from external devices. The CPU therefore waits for the end of a data transfer rather
than for the results of an algorithm, and it is possible that transactions with different modes are
wondered to control the upstream and the downstream. Taking the example of a controller for a
local network interface, the CPU could write outgoing packets on the data buffer and could wait
for the end of the upstream polling a control word, while it could be informed of packet arrival by
the interrupt signal.

In such IP cores, more aimed at communication than at calculation, a certain number of prelimi-
nary settings preceding the the actual transfer of data is likely required (settings of transfer rate,
preferred data width, window size, packet header and so on), so two different types of transac-
tions could be foreseen by the designer, one for configuration and one for data.

Whatever the core implemented, the developer must take into account that the FPGA is the block
that control the LEDs, numbered from 0 to 7, of the SEcube™ DevKit. Referring to the pinout of
the FPGA shown in the Getting Started manual and also in Figure 2 of this document, LEDs are
controlled by the following pins:

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 56 ofEl]

Document Classification: Public Release: 006

LED PIN

LEDO PR16C
LED1 PR16D
LED2 PR17C
LED3 PR17D
LED4 PR18C
LED5S PR18D
LED6 PR19A
LED7 PR19B

If not mapped in the LPF file, these LEDs are left in a weak pullup state. To be controlled by a core,
they must be mapped in the LPF file following the table above. Remember that, being in pullup,
they are lightened by setting at logic 0 their control pin and turned off vice versa. The usage of
LEDs must be very useful for core’s debugging purposes.

Similarly, the FPGA also controls the two push buttons (PB) placed under the LEDs on the De-
vKit. The switches control in pulldown (active low) the following pins:

PB PIN
PBO (SW4001) PR19C
PB1 (SW4000) PR19D

As for the LEDs, also the PBs must be mapped in the LPF file following the table above.

Due to the timing paths present in the data buffer and in the IP Manager entity, the FPGA must run
with a clock 3 times slower than the CPU (which runs at 180 MHz), as only integer prescaler can
be set and a half rate (90 MHz) is too fast for the two main blocks of the architecture. A 60 MHz
(or lower) constraint must be thus set in the LPF file, so that if setup and hold times are violated
(see 5.3.2), the designer is advised and is free to choose either to further slow down the clock
frequency arriving from the CPU or to edit the design in order to meet the constraint. The chosen
running frequency is related to the two generic parameters of the top entity VHDL file, ADDSET
and DATAST, which must respect the software configuration stated by the low-level driver, as it
will be presented in the following paragraph.

6.2 Software design guidelines

For correctly interacting with the FPGA, a dedicated low-level driver was developed. Functions for
initializing the environment, opening and closing a transaction, writing and reading to or from a
specified location in the buffer and a global FPGA interrupt service routine are present in this set.
A semaphore then is encharged of blocking possible new transactions when one of them is still
opened with a core. The APIs use recasts and wrappers for native types and relative addresses
not to force the user to know lower details. Therefore, the first suggestion is to always and only
use this API to control the CPU-FPGA communication.

In any case, it is strongly recommended to write a piece of software which is aware of the rules of
the communication explained in Section 3 (e.g. when in polling mode, first open the transaction,
then write inputs, then listen to a register and then read outputs before closing, when in interrupt
mode do not poll the core if the interrupt is not raised yet, etc.)

When an interrupt request arrives, the global ISR of the FPGA (connected to pin PA9 of the CPU)
is called (EXTI9_5_IRQHandler()). The body of this function must be actually customized by
the user. Anyway;, a trace is already present in the released file of the driver. After having checked
that the logic level of the line is high, the CPU should read the address 0x00 of the buffer first,
to identify the interrupting core. At that point, the private variable row® is updated and can be

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 57 ofEl]
Document Classification: Public Release: 006

switch-cased. For each allowed value, i.e., for each present core, the dedicate interrupt service
routine has to be written there. Before returning from the global routine, the interrupt flag is
cleared so that the CPU is ready to be interrupted another time.

The generic ISR of a core should open an acknowledgment transaction rather than a normal one,
so that both the core and the manager are advised that the request has been accomplished. When
received the ACK along with the enable, the core knows that the CPU wants to receive data from
it, so the core can immediately start to fill the buffer. If the CPU starts reading the buffer imme-
diately after the transaction opening, it may incur in timing errors, as it does not know what is
happening and what are the words already written and the ones to be written yet. It is thus ad-
visable for the CPU to wait a little time, depending on an estimation on what is the time required
by the core to write its outputs.

The other functions of the driver can be trusted, left untouched and just used. The FPGA_IPM init
() function, however, may be customized for the setup/hold times of the FMC and for the fre-
guency of the clock passed to the FPGA. If the design does not meet the 60 MHz constraint, the
second parameter of the macro _ HAL RCC_MCO1 CONFIG() present in that function can be
changed to set another prescaler. The parameter is RCC_MCODIV_X and X can assume values
from 1to 5, i.e., the FPGA can run at frequencies from 180 MHz to 36 MHz. Once decided the
operating frequency, it is also possible to change AddressSetupTime and DataSetupTime
fields of the timing structures relative to read and write operations of the FMC, to stretch them
as preferred. Values are expressed in terms of CPU clock cycles. Changes are free, but the over-
all settings must be compliant each other. In fact, given X the value of the prescaler, software
parameters AddressSetupTime and DataSetupTime and hardware parameters ADDSET and
DATAST (VHDL generics of the top entity), the following formulas must be absolutely respected
to make the system work:

ADDSET
DATAST

AddressSetupTime / X
DataSetupTime / X

Since the two hardware parameters are read by a counter internal to the FPGA, they must also be
natural non-zero values.

6.3 Single-core applications

The FPGA architecture developed in this project is thought for a multicore environment, where
multiple IPs coexist to perform different tasks, with the advantage of being able to address them
individually without having to reconfigure the entire FPGA whenever you want to use a different
service. However, in principle nothing forbids having an environment where there is a need to
exploit the advantages of a single IP core. In this scenario, the IP Manager has no effective task
to perform and becomes a useless intermediary between the buffer and the only IP present. For
single-IP applications that require optimized timing and area constraints, the Manager could be
dropped without the need for a radical redesign of the environment: the IP can maintain the
standard interface defined by our work.

In fact, since the IP Manager works primarily as a dynamic connector of the core interface with
the buffer interface, in case there is a single core this connection can be operated statically in the
top entity of the VHDL design, without changing anything neither in the default interfaces of the
buffer and of the core nor in their internal behavior.

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 58 of @
Document Classification: Public Release: 006

cpu_fpga_clk

cpu_fpga_rst

opcode_ip[5:0]

enable_ip
ack_ip
row_0[15:0] int_pol_ip

_ cpu_fpga_bus_d[15:0]

<

ip_to_buf data[15:0]

buf_to_ip_data[15:0]

> >

cpu_fpga bus_a[5:0]

buf_addr_ip[5:0]
DATA BUFFER |« P
cpu_fpga_bus_noe 16 bit x 64 buf_rw_ip
buf_enable_ip
cpu_fpga_bus_nwe
—* cpu_write_completed_ip
cpu_fpga_bus neft cpu_read_completed_ip

error_ip
cpu_fpga_int_n
interrupt_ip

Figure 24: Example of the FPGA internal connections with a single IP core

The Figure @ shows the internal connections of an FPGA package with a single core and without
the IP Manager. As it is possible to see, there is no port modification in the entities. The first
address of the buffer, containing the control word, could be simply split in its components and
immediately reflected to the IP which then is informed of the start/end of the transaction and
of the transaction parameters. Data, address, control and strobe signals are not multiplexed but
statically assigned to the only IP present, which uses them in the exact same way than in the IP
Manager scenario. The interrupt and error signals are not to be handled by any controller, since
the request can only arrive from one IP, so both of them can be attached to the FPGA global in-
terrupt signal. The distinction between these two cases could be overcome.

Obviously, the CPU must be aware of this situation, and the driver should be minimally changed
to avoid useless controls. For example, it is no longer necessary to check at software level the
identity of the active core, but only if there is already an open transaction or not, at most. Alike,
setting the IPADDR field of the control word becomes pointless (that part of row 0 is neglected at
buffer interface).

The new ISR for such an FPGA could skip the reading of row 0 and immediately start an acknowl-
edgment transaction to get the results or to understand the problem, in case the interrupt was
triggered in response of an error line assertion.

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 59 of @
Document Classification: Public Release: 006

7 An example IP core: SHA256

After creating a reliable environment, we decided to include an example IP core in the project, a
core that executes an algorithm of effective and wide use in the cryptographic domain. We are
talking about the SHA256. This section is intended to present the SHA256 IP core, first introduc-
ing it with a brief overview of the algorithm and the architecture, and then continuing with the
presentation of its use modes.

7.1 Overview

Secure Hash Algorithm (SHA) is a label given to a family of cryptographic algorithms which have
been developed and published since ‘90s by the U.S. Government. Given a message or a file or
any sequence of information, the SHA produces a digest for it, a compact string (of 256 bits in
the SHA256 case) which is unique and not reversible. These features make it a safe way to store
sensitive information, preventing it from tracing back to the original message (think of the case
of passwords stored on servers) or from modifying (think of a file whose hash represents its kind
of digital certificate, since just a few bytes of difference completely change the digest).

The hashed message can be of whatever dimension but must be divided into blocks of 512 bits
that one after the other contribute to transform the starting hash (always the same, defined by
the standard) into the digest with a series of plain operations, mainly rotations and additions. At
every round of the algorithm, one 32-bit word from the block (extended from 512 to 2048 bits)
enters the main sequence along with the hash (called also state), and as a result a new state is
produced. There are thus 64 rounds like this, then at the end the state is summed with the starting
hash to obtain the digest. The algorithm is therefore mostly sequential and, more important, one
block must wait the computation of the foIIowing@.

The core we developed for the execution of the SHA works with one block and leaves the division
of the message into blocks and the padding of the last one to the driver. In other words, every
time a block is to be computed, the intermediate state and the block itself must be written on
the data buffer and the production of a new state must be awaited. This was an almost obligatory
choice for the reduced dimensions of the data buffer, which offers a memory space which is barely
enough to contain the state (16 16-bit words) and a single block (32 16-bits words).

2For additional details on SHA family of algorithms, please refer to https://web.archive.org/web/20130526224224/
http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

https://web.archive.org/web/20130526224224/http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf
https://web.archive.org/web/20130526224224/http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf

IP-core Manager for FPGA-based design on SEcube™ Page 60 of @
Document Classification: Public Release: 006

CONTROL

o comor |]
. ADDRESS T CONTROL UNIT

————

|
[—

DATA IN j’wux}:‘r) BLOCK FIFO j|7 :% R-PIPELINE }:JJ

4 ‘ X
STATE REGISTERS g’[\

=

P-PIPELINE
MUX (=1

T IN
V

(
M
\ /
\ /
\ + /
\ /
DATA OUT ‘

P !

Figure 25: SHA256 IP core architecture overview

The Figure @ shows the internal architecture of the core. The control unit is the main central
entity of the core, and contains the microcode for controlling the datapath, but also is responsible
of control signal interpretation and driving and address forwarding towards the buffer. Whenever
the enable signal is sensed, the machine inside this unit awakens and starts reading the state
putting it into the dedicate registers. After that, the reading of the block starts: the acquired
words are inserted in a queue of registers called block FIFO. The transaction is then closed and the
chain, now filled, releases its content with a first-in-first-out policy towards a first computational
block called R-pipeline. This pipeline contains 3 stages and is used to extend the block from 512
to 2048 bits creating 48 additional 32-bit words needed for the computation. The work of the
R-pipeline actually goes in parallel with the main sequence of the algorithm, represented by the
P-pipeline. This is a 4-stage pipeline which makes the actual encryption of the block. The first
word of the block is encrypted using the initial state stored in the dedicate registers, while the
following are encrypted using the state coming from the previous cycle of the P-pipeline. Once
every of the 64 32-bit words have passed through the 4-stage pipeline one after the other, the
final sum between the obtained state and the initial one can be computed, and the output can
be stored, with modes and times dictated by the transaction mode adopted (interrupt/polling).

7.2 Testing the core via HDL simulation

In the downloadable material relative to this project, the folder containing the HDL code for the
FPGA also contains a testbench (“FPGA_testbench.vhd”) which can be simulated with whatever
HDL simulation tool available to you. We anyway recommend the use of Altera™ ModelSim, for
which a TCL script file is already provided in the same folder.

The testbench contains procedures which emulate the FMC behaviour during read and write op-

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

IP-core Manager for FPGA-based design on SEcube™ Page 61 of@
Document Classification: Public Release: 006

erations and 2 benchmarks that show a polling and an interrupt transaction respectively, with the
core computing the same block with the same starting hash.

7.3 Testing the synthesized core via high-level driver example

In the other folder of the downloadable material, the C source files are stored. These files are
to be added to the Eclipse project as explained in EI] The file “TEST_FPGA.h” present here al-
ready contains the FPGA configuration with the SHA256 core, as well as the file “FPGA.c” already
contains the correct value for the variable g_iDataSize. Therefore, the process of synthesis
explained in Sections and can be skipped.

Besides the files named in Section El], two additional files (“sha256_fpga.c” and “sha256_fpga.h”)
must be added with the same procedure in order to interact with the SHA256 IP core. Such files
contain an example on how a high-level driver for controlling a core can be written. It offers just
one public function,

SHA256_FPGA_digest_message(const uint8_t xmessage, uint64_t
datalLen, uint8_t xdigest)

which receives the pointer to the message, the pointer to the resulting digest and the number of
bytes to be processed. Internally, it divides the message into blocks and pads the last block, and
every time a block is ready to be computed, it is sent to a lower-level private function which han-
dles reads and writes to establish a polling transaction with the core for performing the required
computation.

The header “sha256_fpga.h” must be included in “main.c” for correct working, besides the in-
cludes already suggested in EI]

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

	Features
	System Architecture
	Global Architecture
	The CPU
	The FPGA

	FPGA-CPU connection
	FPGA internal structure
	The data buffer
	The IP cores

	The IP Manager

	Communication Protocol
	Overview
	Polling
	Interrupt

	The control word
	Sequence diagrams

	Driver
	Low-level APIs
	FPGA interrupt handler
	Concurrency issues

	User Manual
	The SEcube™ System Setup
	Hardware resources
	Software resources
	Assembling the System
	Assembling Steps
	What it should happen

	C/C++ Project
	SEcube™ Open Source Software Libraries - Device Side
	Running your first program: FPGA_LED (device-side)
	How to import your own project

	HDL project
	How to create a Lattice Project
	Synthesis Procedure
	Deployment Tool usage

	Putting all together

	Technical Guidelines
	Hardware design guidelines
	Software design guidelines
	Single-core applications

	An example IP core: SHA256
	Overview
	Testing the core via HDL simulation
	Testing the synthesized core via high-level driver example

