

Release: April 3rd, 2019

The SEcube Wallet
Project documentation

The SEcubeWallet Page of 2 18
Document Classification: Confidential Release: 001

The SEcubeWallet Page of 3 18
Document Classification: Confidential Release: 001

Proprietary Notice
The following document offers information, which is subject to the terms and
conditions described hereafter.
While care has been taken in preparing this document, some typographical errors,
error or omissions may have occurred. We reserve the right to make changes to the
content and information described herein or update such information at any time
without notice. The opinions expressed are in good faith and while every care has
been taken in preparing this document, some typographical errors, error or
omissions may have occurred. We reserve the right to make changes to the content
and information described herein or update such information at any time without
notice. The opinion expressed are in good faith and while every care has been
taken in preparing this document.

Authors
Giuseppe AIRÒ FARULLA (CINI Cybersecurity National Lab)
giuseppe.airofarulla@polito.it
Walter GALLEGO GÓMEZ (CINI Cybersecurity National Lab)
waltergallegog@gmail.com
Paolo PRINETTO (President, CINI) paolo.prinetto@polito.it
Antonio VARRIALE (Managing Director, Blu5 Labs Ltd) av@blu5labs.eu

Trademarks
Words and logos marked with ® or ™ are registered trademarks or trademarks
owned by Blu5 View Pte Ltd. Other brands and names mentioned herein may be the
trademarks of their respective owners. No use of these may be made for any
purpose whatsoever without the prior written authorization of the owner company.

Disclaimer 
THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN “AS
IS” BASIS AND ITS AUTHORS DISCLAIM ALL WARRANTIES, EXPRESS, OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY TAHT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES
OR MERCHANTABILITY OR FITNESS FOR A PURPOSE.
THE SOFTWARE IS PROVIDED TO YOU “AS IS” AND WE MAKE NO EXPRESS OR IMPLIED
WARRANTIES WHATSOEVER WITH RESPECT TO ITS FUNCTIONALITY, OPERABILITY, OR
USE, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PURPOSE, OR INFRINGEMENT. WE EXPRESSLY
DISCLAIM ANY LIABILITY WHATSOEVER FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR SPECIAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOSS
REVENUES, LOST PROFITS, LOSSES RESULTING FROM BUSINESS INTERRUPTION OR
LOSS OF DATA, REGARDLESS OF THE FORM OF ACTION OR LEGAL THEREUNDER
WHICH THE LIABILITY MAY BE ASSERTED, EVEN IF ADVISED OF THE POSSIBILITY
LIKELIHOOD OF SUCH DAMAGES.

mailto:giuseppe.airofarulla@polito.it
mailto:paolo.prinetto@polito.it
mailto:av@blu5labs.eu

 418

 518

Table of content
1. INTRODUCTION 7

2. THE SECUBEWALLET 9

2.1. GOALS 9
2.2. INTERACTION WITH THE SECUBETM FRAMEWORK 9
2.3. TECHNOLOGIES AND FRAMEWORKS 9
2.3.1. QT 10
2.3.2. PWGEN: PRONOUNCEABLE PASSWORD GENERATOR 10
2.3.3. ZXCVBN: PASSWORD STRENGTH ESTIMATION 11
2.3.4. CUSTOM PASSHPRASE GENERATOR 11
2.4. USING THE SECUBEWALLET 12
2.4.1. MANAGING WALLETS IN THE SECUBEWALLET 14
2.4.2. MANAGING TABLES IN THE SECUBEWALLET 16
2.4.3. MANAGING ENTRIES IN THE SECUBEWALLET 17

 618

 718

1. Introduction

Nowadays, having a large quantity of digital passwords is the norm, and as their
number increases, it becomes impossible to memorize all of them. This is
especially true considering one should adopt strong passwords which are in general
very long and complex, and therefore hard to remember. This has led users to rely
on software applications to manage their passwords, the most common cases being
web browsers and password wallets. The drawback of this approach is that security
may be compromised, since all the passwords are stored in the same place and an
attacker could gain access to them. For users particularly interested in ensuring
the security of their systems, this software-based approach may not be acceptable.
This document presents SEcubeWallet, a custom solution based on the SEcube™
framework to securely manage passwords and credentials in general. The SEcube™
(Secure Environment cube) Open Security Platform is an open source security-
oriented hardware and software platform, designed and constructed with ease of
integration and holistic security in mind.
The SEcube™ (Secure Environment cube) framework consist of an open source
security-oriented hardware platform designed by the Blu5 Group, and a set of open
source software libraries developed by European research institutions. The core of
the framework is the SEcube™ chip, which integrates three key security elements
in a single package: a fast floating-point Cortex-M4 CPU, a high-performance FPGA
and an EAL5+ certified Security Controller (Smart Card). These elements, in
conjunction with a set of custom software libraries allow developers to implement
highly reliable security applications.

 818

 918

2. The SEcubeWallet

2.1. Goals

The main goals of the SEcubeWallet are:
• Managing the users’ passwords (hereinafter referred to as a wallet) using

secureSQLite, one of the SEcube™ host-side libraries, that works by
wrapping the functionalities of the SQlite standard to create SEcube™
secured databases (cfr. “Wiki”).

• Serving as a general GUI to let users authenticating to the SEcube™ device
and creating, opening, editing, saving, and deleting wallets with ease. The
GUI displays the wallet's content in a table view and each column can be
filtered individually.

• Provide the users with strong passwords (and passphrases) which can be
used with confidence in any login service. The application also verifies the
entropy (strength measure) of both the passwords it generates itself and
the ones provided by the user.

2.2. Interaction with the SEcubeTM framework

The SEcubeWallet interacts with the SEcube™ device, requesting for its basic
services like authentication and encryption.
The application runs in a computer, denominated host, and the SEcube™ chip,
denominated device, has to be connected to it via USB. The host request for
security operations to the device, using the SEcube™ software libraries. Each
device comes with a master password, and in order to use it, it is necessary to
perform an authentication procedure entering said password from the host.
It manages passwords using secureSQlite, one of the SEcube™ libraries, which
wraps the functionalities of the SQlite standard to create SEcube™ secured
databases. In short, the data of interest is encrypted using the SEcube™ device,
and can only be decrypted if the device is connected and the user authenticates
using a master password.
As the core operations are performed by the device, not by the host, the
encryption/decryption can be done in any computer where an appropriate version
of Qt is installed and the device is connected.

2.3. Technologies and frameworks

The desktop application presented in this document is written in C/C++ and Qt. It
can be modified using the Eclipse IDE release Neon version 4.6.3 (or higher) or the 1

Qt Creator IDE version 4.6.2 (or higher). Additionally, the application uses the 2

Open Source freely available libraries PwGen (random password generator) and 3

zxcvbn (password strength estimator), together with a custom passphrase 4

generator.

 https://www.eclipse.org1

 https://www.qt.io/qt-features-libraries-apis-tools-and-ide/ 2

 https://linux.die.net/man/1/pwgen3

 https://github.com/dropbox/zxcvbn 4

https://linux.die.net/man/1/pwgen
https://github.com/dropbox/zxcvbn
https://www.eclipse.org
https://www.qt.io/qt-features-libraries-apis-tools-and-ide/

 1018

The development was carried out on a Linux-based machine, but the application
has been tested with success also in machines running Windows or MacOS.
As front end, the application presents the user with a pleasant and intuitive
graphical user interface. With it, the user can easily create, delete, open, and
modify password wallets. The GUI is easily configurable and is cross-platform.
Additionally, the application can suggest strong passwords and passphrases and can
also verify the entropy of the ones provided by the user.

2.3.1.Qt

SEcubeWallet was developed using the Qt framework, version 5.11.1 . Qt has been 5

chosen for a variety of reasons, among which there are
• It allows for a seamless use of C/C++ libraries such as SEFile and

secureSQLite, which are the backbone of this project.
• Qt is cross-platform, meaning the developed application can be compiled to

work on any of the major OS.
Qt 5.10 or higher is required to compile SEcubeWallet from sources.
Qt is a cross-platform application development framework for desktop, embedded
and mobile. Supported Platforms include Linux, OS X, Windows, VxWorks, QNX,
Android, iOS, BlackBerry, Sailfish OS and others. Qt is not a programming language
on its own. It is a framework written in C++. A preprocessor, the MOC (Meta-Object
Compiler), is used to extend the C++ language with features like signals and slots.
Before the compilation step, the MOC parses the source files written in Qt-
extended C++ and generates standard compliant C++ sources from them.

2.3.2.PwGen: Pronounceable password generator

PwGen is an open source program that generates human friendly passwords that
are also secure. It is available in the official Linux repositories, and there is a
Windows version as well.

PwGen offers several options that can drastically change the nature of the
generated passwords. Here follows a list of the options available for users of the
SEcubeWallet:

• Length: The desired length of the password. It is recommended to be at
least 12 for non-random passwords and 8 for random ones.

• No numerals (-0): Don't include numbers in the generated passwords.
• No capitalize (-A): Don't include any capital letters in the generated

passwords.
• Ambiguous (-B): Don't use characters that could be confused by the user

when printed, such as 'l' and '1', or '0' or 'O'. This reduces the number of
possible passwords significantly, and as such reduces the quality of the
passwords. It may be useful for users who have bad vision, but in general
use of this option is not recommended.

• Capitalize (-c): Include at least one capital letter in the password.
• Numerals (-n): Include at least one number in the password.
• Secure (-s): Generate completely random, hard-to-memorize passwords.
• No vowels (-v): Generate random passwords that do not contain vowels or

numbers that might be mistaken for vowels. It provides less secure
passwords to allow system administrators to not have to worry with random
passwords accidentally contain offensive substrings.

 https://www.qt.io 5

https://www.qt.io

 1118

• Symbols (-y): Include at least one special character in the password.

By default, pwgen behaves as if the options -nc were used, that is, pronounceable
passwords with at least 1 capital letter and 1 number. The strongest passwords this
program can generate are obtained with the options -ys, as it results in random
passwords with special symbols, numbers and capital letters (these last two are
enabled by default). They are very hard to remember, but can be managed easily
via the SEcubeWallet application.

2.3.3.zxcvbn: Password strength estimation

For over 30 years, password requirements and feedback have largely remained a
product of LUDS: counts of Lower- and Uppercase letters, Digits and Symbols. LUDS
remains ubiquitous despite being a conclusively burdensome and ineffective
security practice. zxcvbn is an alternative password strength estimator that is
small, fast, and crucially no harder than LUDS to adopt.
zxcvbn is regarded by the community as one of the most reliable and
mathematically advanced open source password estimators. In security forums and
discussion, it always pops out as an excellent tool, much better than other
passwords estimators commonly used in web pages.

zxcvbn calculates a password’s entropy to be the sum of its constituent patterns.
Any gaps between matched patterns are treated as brute-force "patterns" that also
contribute to the total entropy. That a password’s entropy is the sum of its parts is
a big assumption. However, it’s a conservative assumption. By disregarding the
"configuration entropy" — the entropy from the number and arrangement of the
pieces — zxcvbn is purposely underestimating, by giving a password’s structure
away for free: It assumes attackers already know the structure (for example,
surname-bruteforce-keypad), and from there, it calculates how many guesses
they’d need to iterate through. Currently zxcvbn matches against:

• Dictionaries: Common words the user is likely to use as password. Multiple
dictionaries, in a simple .txt format can be used. In this work, we present a
few: English words, Italian words, names and surnames, Burnett’s 10,000
common passwords, words from tv and films. The match has an associated
frequency rank, where words like 'the' and 'good' have low rank, and words
like 'photojournalist' and 'maelstrom' have high one. This lets zxcvbn scale
the calculation to an appropriate dictionary size on the fly, because if a
password contains only common words, a cracker can succeed with a
smaller dictionary. For all dictionaries, match recognizes uppercasing and
common substitutions.

• Spatial keyboard patterns: Some users are likely to choose passwords based
on spatial pattern. Qwerty keyboard, Dvorak keyboard, and keypad are
considered.

• Repeats: Users are also prone to repeat the same characters in a password.
• Sequences: Numeric or alphabetic sequences.
• Dates: Years from 1900 to 2019 are considered and dates in different

formats (e.g., 3-13-1997, 13.3.1997, 1331997).

2.3.4.Custom passhprase generator

 1218

PwGen can generate pseudo-random pronounceable passwords, but to match the
constraints proposed by the zxcvbn library they should be easy to remember, but
long enough to give excellent entropy results. To fill this gap, a custom PassPhrase
generator was developed.

The PassPhrase generator developed by the author works by randomly picking out
words from dictionary files. The user can tune the PassPhrase generation as
follows:

• Dictionaries: The user must select appropriate dictionaries, containing a
sufficiently large number of lines (larger than 10000) to ensure the picked
words are really random. The English and Italian dictionaries used by zxcvbn
are a good example. The user can work with as many dictionaries as
desired, and the format must be one word per line. Only the first word of
each line is counted, as everything after a space is trimmed.

• Number of words: The user can configure the number of words the
generated PassPhrases are composed of. The recommended size is four, but
it can be as long as the user wants.

• Minimum Length of Words: With this option is possible to select only
random words whose length is higher than a certain value. This is to make
sure the resulting PassPhrase is not too short and therefore too insecure.
The drawback here is that the higher the selected threshold, the fewer the
available words in the dictionaries.

• Only use infrequent words: If the dictionaries follow the same format as
those used for zxcvbn, that is, the words are ordered by frequency, having
the most uncommon words in the lower part of the dictionary, the user can
then ask to generate PassPhrases containing only unusual words. The
drawback here is, again, fewer words to choose from. The percentage of
words that are used is configurable.

• Capitalize first letter: To make the PassPhrases more readable, the first
letter of each word can be capitalized.

2.4. Using the SecubeWallet

In order to compile the project with Qt (version 5.10 or higher required), open Qt
and open the project by selecting the file “Secure Wallet/code/secubewallet-
master/SecubeWallet.pro”. Once the project is imported in order to start building
the user need to first build each “sub-modules”. Expand the project directory in
the left-menu, than starting from the SEfile directory, right-click on it and select
“compile”. Proceed to build each “sub module” with a bottom up approach, once
each module has been correctly compiled the user can compile the whole project.
From now is not required to build each “sub module” every time unless a clean is
performed.

 1318

Figure 1 - Login windows

The main window is composed of the following elements:
• Table View: Used for displaying the wallet entries. It resizes smoothly with

the window, can be ordered by any of the columns, and the pass- words are
hidden by default but can be shown if the user wants to.

• Filters: The user can search in each of the table’s columns using filters.
These filters are implemented inside a separate container, but they resize
together with the table.

• Entries Tool Bar: It is positioned to the left of the table. It has the actions:
add/edit/delete entries, show passwords, fit table, change date filter,
launch domain and select table.

• Tables Tool Bar: It is positioned in the top right of the table. It has the
actions: add/rename/delete table.

• Wallets Tool Bar: It is positioned to the top left of the table. It has the
actions: new/open/delete/save/save as/close Wallet.

• Menu Bar: It is positioned at the top of the window. It contains all the
previous actions, plus preferences and help.

• Status Bar: Positioned at the bottom of the window, it is used to display
some success/error messages to the user, and the current wallet name.

Figure 2 - Main window

 1418

2.4.1.Managing wallets in the SecubeWallet

The actions to manage users’ wallets are: New, Save, Save As, Open, Close, and
Delete.

New Wallet action
When the user triggers the New_Wallet action, the first step to execute is to check
if there is another wallet opened and if it has unsaved changes. If, so the
confirmation dialogue in Figure 3 is shown, so the user can decide whether to save
the changes, discard them, or cancel the creation of a new wallet.

Figure 3 - Save or Discard confirmation window

In case the user clicks Save, the Save_Wallet action is triggered before continuing.
Discard continues without saving, and Cancel returns without doing anything.

If the process continues, the next step is to close any previous in-memory database
handlers, save the table_view geometry (if any), and open a new in-memory
database using the Qt class QSqlDatabase.

An in-memory data base is used for editing. It has the advantage of being fast
because there is no access to the hard disk, and secure, because all the data is in
the application memory space, and therefore is protected by the OS.

The last step is to update the GUI state, by enabling some action like Add_Table
and Save_Wallet, and disabling others, like Delete_Table and Rename_Table.

 1518

Save Wallet action
To write the wallet to the disk, it is necessary to have a filename, so the first step
is to check if the user already entered one (from previous saves). If not, with the
dialogue windows shown in Figure 4, the user can choose the directory and the
filename to save.

Figure 4 - Window for saving wallets and managing file names

The need for two dialogues instead of a regular file browser comes from the fact
that the chosen filename will not be readable from the OS, since SEFile also
encrypts it. Similarly, wallets already saved in the directory cannot be displayed
with a regular file browser, so it is necessary to use the SEFile function secure_ls.

After having chosen a filename, the next step is to read all of the tables in the
current in-memory database, row by row. Then, for each row to save, the
Save_Wallet action creates and stores in a temporary file one SQLite statement of
the form INSERT INTO table VALUES(row). All of them are then merged into a single
command statement that is then executed into the secured in-disk database. This
optimization ensures only one access to the SEcube™ and hard disk is performed.

Save Wallet As action
This action is very simple, it just clears the current filename (if any), and calls the
Save_Wallet action; as there is no filename, the user is forced to enter a new one.
The only point to be careful about is that, in case the Save_Wallet_As process is
aborted, the previous filename needs to be recovered, so before clearing, the
filename is temporary stored in case it is needed.

Open Wallet action
Similarly to what happens with the New_Wallet action, also in case of the
Open_Wallet action, the first step is to check for unsaved changes and in case to
prompt the user whether they have to be saved or discarded, with the dialogue in
Figure 3.

If the user decides to continue, the dialogues in Figure 5 allow to choose from the
list of the existing wallets the one to open.

The application proceeds doing the inverse process of the Save_Wallet action, that
is, read all the tables from the secure in-disk database and create an in- memory
database with this data. First, the in-disk data base is opened as read only, and a
list named tables with the existent tables in it is generated. Then an in-memory
database is created. Finally, for each table in tables, its contents are read, a

 1618

correspondent table is created in the in-memory database, and the latter is
populated with the read contents from the in-disk DB.

! !
Figure 5 - Opening wallets action

Close Wallet action
This action is very simple. As usual, before closing the current wallet a check for
unsaved changes is performed, and the user is asked what to do with them using a
confirmation dialogue. If the user decides to continue, the in-memory database
handler is closed, and the table geometries are saved. Finally, the GUI is updated.

Delete Wallet action
Deleting a wallet involves deleting an in-memory database and/or an in-disk
database.

If only the in-memory database exists (i.e., the user has not saved it to disk yet),
the wallet is simply closed, as in the previous section.

If there is no opened wallet, and the user wishes to delete an in-disk database, a
select file dialogue equal to the one in the Open_Wallet action is shown, where
the user can choose the wallet to delete. Then the wallet is deleted: the encrypted
version of its filename is retrieved using the SEcube™ API, and then the file in the
disk is deleted using standard OS calls.

If both in-disk and in-memory wallets are to be deleted, that is, if there is an
opened wallet that has been already saved to disk, there is no need for a select
file dialogue, as the filename is known from the Save_Wallet action. The in-
memory database handler is closed and the in-disk encrypted wallet file deleted as
explained above.

In all the above cases, a confirmation dialogue asks the user for confirmation prior
deleting the wallet.

2.4.2.Managing tables in the SecubeWallet

Actions regarding tables, their creation and display, are explained in the following.
Qt fundamental input structures are used, namely:

• The QInputDialog class, which provides a simple convenience dialog to get a
single value from the user;

• The QMessageBox class, which provides a modal dialog for informing the
user or for asking the user a question and receiving an answer;

• The QComboBox class, which provides a widget for a combined button and
popup list.

 1718

Add Table action
With an in-memory wallet opened, the user can add a new table to it by simply
entering a name. With the QInputDialog class, it is possible to ask the user for a
name easily. If the name is valid, the SQLite query to add the table is executed. It
may be the case the table already exists, in which case the query execution returns
an error and the user is notified.

Delete Table action
To delete a table, it is enough to use the SQLite DROP TABLE command. With the
QMessageBox the user is asked to confirm before deleting. After deleting, the table
view needs to be updated, to show the next table in the wallet. If there are no
more tables, the view is simply hidden, and other GUI elements like Add Entry
disabled.

Rename Table action
To Rename a table the SQLite command ALTER TABLE RENAME TO is used. After this,
a QComboBox used to select the current table being displayed is updated to reflect
the name change.

Select Table
To allow the user to select one table to display out of the existent ones in the
current wallet, a QComboBox is added to the Entries Tool Bar. Each time a Wallet is
opened/closed, or a table is added/renamed/deleted, the items in the QComboBox
are updated accordingly. When the selected item in the QComboBox changes, the
update procedure is triggered.

2.4.3.Managing entries in the SecubeWallet

Actions regarding entries, their creation and display, are explained in the following
Add Entry action
The AddEntry class allows users to input a new entry to one of the tables, using the
subwindow in Figure 6. This subwindow is composed of:

• Text input elements: To enter the Username, Domain, Description and
Password, five QLineEdit are used. The password needs to be entered twice
to make sure it is the desired one, and if it is not the same in both text
fields, an error message is displayed. The date is not entered by the user,
but generated automatically based on the system clock;

• Show password checkBox: By changing the echo mode in the pass- word
QLineEdit, it can be hidden or shown. It is hidden by default;

• Password Generator Button: This triggers one of two available generators:
PwGen or PassPhraseGen.

• Password Strength elements: A Progress Bar used to display the password
strength calculated with the zxcvbn library, a label to show some
information about the strength, and a button to open a subwindow showing
the details of these calculations. If the zxcvbn library has not been
compiled by the user in the settings window, these elements are disabled;

• Bottom buttons: The ok button is clickable only when all the text fields
(except for description, which is optional) are filled, and the two passwords
coincide. The settings button opens the settings subwindow so the user can
customize the password generators or the strength estimator without having
to close the AddEntry subwindow.

 1818

!
Figure 6 – Window for adding a new entry to a table

When the user clicks the ok button, the new entry needs to be added to the
database.

Edit Entry action
The user can edit any of the entries by selecting one of the cells in the tableView
and clicking the Edit Entry button, or by double-clicking any of the cells. In either
case, the data from the selected row is retrieved and passed to new AddEntry
object using its constructor. In this way, the user is presented with an AddEntry
subwindow where the input fields are already filled with the current data. The user
can then modify and save them by clicking ok. In this process the ProxyModel is
used instead of the model, because the former allows to identify the items
selected in the tableView.
Delete Entry action
Deleting an entry is very simple. The row index of the selected cell is used in the
ProxyModel method removeRow(row), and the change is submitted with submitAll.
Before deleting, the user is asked to confirm the action.

	Introduction
	The SEcubeWallet
	Goals
	Interaction with the SEcubeTM framework
	Technologies and frameworks
	Qt
	PwGen: Pronounceable password generator
	zxcvbn: Password strength estimation
	Custom passhprase generator
	Using the SecubeWallet
	Managing wallets in the SecubeWallet
	Managing tables in the SecubeWallet
	Managing entries in the SecubeWallet

