

Release: April 3rd, 2019

The SEcube Wallet
Project documentation

The SEcubeWallet Page 2 of 19
Document Classification: Confidential Release: 001

The SEcubeWallet Page 3 of 19
Document Classification: Confidential Release: 001

Proprietary Notice
The following document offers information, which is subject to the terms and conditions
described hereafter.

While care has been taken in preparing this document, some typographical errors, error or
omissions may have occurred. We reserve the right to make changes to the content and
information described herein or update such information at any time without notice. The
opinions expressed are in good faith and while every care has been taken in preparing this
document, some typographical errors, error or omissions may have occurred. We reserve the
right to make changes to the content and information described herein or update such
information at any time without notice. The opinion expressed are in good faith and while
every care has been taken in preparing this document.

Authors
Giuseppe AIRÒ FARULLA (CINI Cybersecurity National Lab) giuseppe.airofarulla@polito.it

Walter GALLEGO GÓMEZ (CINI Cybersecurity National Lab) waltergallegog@gmail.com

Paolo PRINETTO (President, CINI) paolo.prinetto@polito.it
Antonio VARRIALE (Managing Director, Blu5 Labs Ltd) av@blu5labs.eu

Trademarks
Words and logos marked with ® or ™ are registered trademarks or trademarks owned by Blu5
View Pte Ltd. Other brands and names mentioned herein may be the trademarks of their
respective owners. No use of these may be made for any purpose whatsoever without the
prior written authorization of the owner company.

Disclaimer
THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN “AS IS”
BASIS AND ITS AUTHORS DISCLAIM ALL WARRANTIES, EXPRESS, OR IMPLIED, INCLUDING BUT
NOT LIMITED TO ANY WARRANTY TAHT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OR MERCHANTABILITY OR FITNESS FOR
A PURPOSE.
THE SOFTWARE IS PROVIDED TO YOU “AS IS” AND WE MAKE NO EXPRESS OR IMPLIED
WARRANTIES WHATSOEVER WITH RESPECT TO ITS FUNCTIONALITY, OPERABILITY, OR USE,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PURPOSE, OR INFRINGEMENT. WE EXPRESSLY DISCLAIM ANY LIABILITY
WHATSOEVER FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR SPECIAL
DAMAGES, INCLUDING, WITHOUT LIMITATION, LOSS REVENUES, LOST PROFITS, LOSSES
RESULTING FROM BUSINESS INTERRUPTION OR LOSS OF DATA, REGARDLESS OF THE FORM
OF ACTION OR LEGAL THEREUNDER WHICH THE LIABILITY MAY BE ASSERTED, EVEN IF
ADVISED OF THE POSSIBILITY LIKELIHOOD OF SUCH DAMAGES.

The SEcubeWallet Page 4 of 19
Document Classification: Confidential Release: 001

The SEcubeWallet Page 5 of 19
Document Classification: Confidential Release: 001

Table of content

1	 INTRODUCTION	 7	

2	 THE	SECUBEWALLET	 9	

2.1	 GOALS	 9	
2.2	 INTERACTION	WITH	THE	SECUBETM	FRAMEWORK	 9	
2.3	 TECHNOLOGIES	AND	FRAMEWORKS	 9	
2.3.1	 QT	 10	
2.3.2	 PWGEN:	PRONOUNCEABLE	PASSWORD	GENERATOR	 10	
2.3.3	 ZXCVBN:	PASSWORD	STRENGTH	ESTIMATION	 11	
2.3.4	 CUSTOM	PASSHPRASE	GENERATOR	 12	
2.4	 USING	THE	SECUBEWALLET	 12	
2.4.1	 MANAGING	WALLETS	IN	THE	SECUBEWALLET	 14	
2.4.2	 MANAGING	TABLES	IN	THE	SECUBEWALLET	 17	
2.4.3	 MANAGING	ENTRIES	IN	THE	SECUBEWALLET	 17	

The SEcubeWallet Page 6 of 19
Document Classification: Confidential Release: 001

The SEcubeWallet Page 7 of 19
Document Classification: Confidential Release: 001

1 Introduction

Nowadays, having a large quantity of digital passwords is the norm, and as their number
increases, it becomes impossible to memorize all of them. This is especially true considering
one should adopt strong passwords which are in general very long and complex, and therefore
hard to remember. This has led users to rely on software applications to manage their
passwords, the most common cases being web browsers and password wallets. The drawback
of this approach is that security may be compromised, since all the passwords are stored in
the same place and an attacker could gain access to them. For users particularly interested in
ensuring the security of their systems, this software-based approach may not be acceptable.

This document presents SEcubeWallet, a custom solution based on the SEcube™ framework
to securely manage passwords and credentials in general. The SEcube™ (Secure Environment
cube) Open Security Platform is an open source security-oriented hardware and software
platform, designed and constructed with ease of integration and holistic security in mind.

The SEcube™ (Secure Environment cube) framework consist of an open source security-
oriented hardware platform designed by the Blu5 Group, and a set of open source software
libraries developed by European research institutions. The core of the framework is the
SEcube™ chip, which integrates three key security elements in a single package: a fast floating-
point Cortex-M4 CPU, a high-performance FPGA and an EAL5+ certified Security Controller
(Smart Card). These elements, in conjunction with a set of custom software libraries allow
developers to implement highly reliable security applications.

The SEcubeWallet Page 8 of 19
Document Classification: Confidential Release: 001

The SEcubeWallet Page 9 of 19
Document Classification: Confidential Release: 001

2 The SEcubeWallet

2.1 Goals

The main goals of the SEcubeWallet are:
• Managing the users’ passwords (hereinafter referred to as a wallet) using

secureSQLite, one of the SEcube™ host-side libraries, that works by wrapping the
functionalities of the SQlite standard to create SEcube™ secured databases (cfr.
“Wiki”).

• Serving as a general GUI to let users authenticating to the SEcube™ device and
creating, opening, editing, saving, and deleting wallets with ease. The GUI displays the
wallet's content in a table view and each column can be filtered individually.

• Provide the users with strong passwords (and passphrases) which can be used with
confidence in any login service. The application also verifies the entropy (strength
measure) of both the passwords it generates itself and the ones provided by the user.

2.2 Interaction with the SEcubeTM framework

The SEcubeWallet interacts with the SEcube™ device, requesting for its basic services like
authentication and encryption.
The application runs in a computer, denominated host, and the SEcube™ chip, denominated
device, has to be connected to it via USB. The host request for security operations to the
device, using the SEcube™ software libraries. Each device comes with a master password, and
in order to use it, it is necessary to perform an authentication procedure entering said
password from the host.

It manages passwords using secureSQlite, one of the SEcube™ libraries, which wraps the
functionalities of the SQlite standard to create SEcube™ secured databases. In short, the data
of interest is encrypted using the SEcube™ device, and can only be decrypted if the device is
connected and the user authenticates using a master password.
As the core operations are performed by the device, not by the host, the
encryption/decryption can be done in any computer where an appropriate version of Qt is
installed and the device is connected.

2.3 Technologies and frameworks

The desktop application presented in this document is written in C/C++ and Qt. It can be
modified using the Eclipse IDE1 release Neon version 4.6.3 (or higher) or the Qt Creator IDE2
version 4.6.2 (or higher). Additionally, the application uses the Open Source freely available
libraries PwGen3 (random password generator) and zxcvbn4 (password strength estimator),
together with a custom passphrase generator.

1 https://www.eclipse.org
2 https://www.qt.io/qt-features-libraries-apis-tools-and-ide/
3 https://linux.die.net/man/1/pwgen
4 https://github.com/dropbox/zxcvbn

The SEcubeWallet Page 10 of 19
Document Classification: Confidential Release: 001

The development was carried out on a Linux-based machine, but the application has been
tested with success also in machines running Windows or MacOS.

As front end, the application presents the user with a pleasant and intuitive graphical user
interface. With it, the user can easily create, delete, open, and modify password wallets. The
GUI is easily configurable and is cross-platform.
Additionally, the application can suggest strong passwords and passphrases and can also
verify the entropy of the ones provided by the user.

2.3.1 Qt

SEcubeWallet was developed using the Qt framework, version 5.11.15. Qt has been chosen
for a variety of reasons, among which there are

• It allows for a seamless use of C/C++ libraries such as SEFile and secureSQLite, which
are the backbone of this project.

• Qt is cross-platform, meaning the developed application can be compiled to work on
any of the major OS.

Qt 5.10 or higher is required to compile SEcubeWallet from sources.

Qt is a cross-platform application development framework for desktop, embedded and
mobile. Supported Platforms include Linux, OS X, Windows, VxWorks, QNX, Android, iOS,
BlackBerry, Sailfish OS and others. Qt is not a programming language on its own. It is a
framework written in C++. A preprocessor, the MOC (Meta-Object Compiler), is used to extend
the C++ language with features like signals and slots. Before the compilation step, the MOC
parses the source files written in Qt-extended C++ and generates standard compliant C++
sources from them.

2.3.2 PwGen: Pronounceable password generator

PwGen is an open source program that generates human friendly passwords that are also
secure. It is available in the official Linux repositories, and there is a Windows version as well.

PwGen offers several options that can drastically change the nature of the generated
passwords. Here follows a list of the options available for users of the SEcubeWallet:

• Length: The desired length of the password. It is recommended to be at least 12 for
non-random passwords and 8 for random ones.

• No numerals (-0): Don't include numbers in the generated passwords.
• No capitalize (-A): Don't include any capital letters in the generated passwords.
• Ambiguous (-B): Don't use characters that could be confused by the user when

printed, such as 'l' and '1', or '0' or 'O'. This reduces the number of possible passwords
significantly, and as such reduces the quality of the passwords. It may be useful for
users who have bad vision, but in general use of this option is not recommended.

• Capitalize (-c): Include at least one capital letter in the password.
• Numerals (-n): Include at least one number in the password.
• Secure (-s): Generate completely random, hard-to-memorize passwords.
• No vowels (-v): Generate random passwords that do not contain vowels or numbers

that might be mistaken for vowels. It provides less secure passwords to allow system

5 https://www.qt.io

The SEcubeWallet Page 11 of 19
Document Classification: Confidential Release: 001

administrators to not have to worry with random passwords accidentally contain
offensive substrings.

• Symbols (-y): Include at least one special character in the password.

By default, pwgen behaves as if the options -nc were used, that is, pronounceable passwords
with at least 1 capital letter and 1 number. The strongest passwords this program can
generate are obtained with the options -ys, as it results in random passwords with special
symbols, numbers and capital letters (these last two are enabled by default). They are very
hard to remember, but can be managed easily via the SEcubeWallet application.

2.3.3 zxcvbn: Password strength estimation

For over 30 years, password requirements and feedback have largely remained a product of
LUDS: counts of Lower- and Uppercase letters, Digits and Symbols. LUDS remains ubiquitous
despite being a conclusively burdensome and ineffective security practice. zxcvbn is an
alternative password strength estimator that is small, fast, and crucially no harder than LUDS
to adopt.
zxcvbn is regarded by the community as one of the most reliable and mathematically
advanced open source password estimators. In security forums and discussion, it always pops
out as an excellent tool, much better than other passwords estimators commonly used in web
pages.

zxcvbn calculates a password’s entropy to be the sum of its constituent patterns. Any gaps
between matched patterns are treated as brute-force "patterns" that also contribute to the
total entropy. That a password’s entropy is the sum of its parts is a big assumption. However,
it’s a conservative assumption. By disregarding the "configuration entropy" — the entropy
from the number and arrangement of the pieces — zxcvbn is purposely underestimating, by
giving a password’s structure away for free: It assumes attackers already know the structure
(for example, surname-bruteforce-keypad), and from there, it calculates how many guesses
they’d need to iterate through. Currently zxcvbn matches against:

• Dictionaries: Common words the user is likely to use as password. Multiple
dictionaries, in a simple .txt format can be used. In this work, we present a few: English
words, Italian words, names and surnames, Burnett’s 10,000 common passwords,
words from tv and films. The match has an associated frequency rank, where words
like 'the' and 'good' have low rank, and words like 'photojournalist' and 'maelstrom'
have high one. This lets zxcvbn scale the calculation to an appropriate dictionary size
on the fly, because if a password contains only common words, a cracker can succeed
with a smaller dictionary. For all dictionaries, match recognizes uppercasing and
common substitutions.

• Spatial keyboard patterns: Some users are likely to choose passwords based on spatial
pattern. Qwerty keyboard, Dvorak keyboard, and keypad are considered.

• Repeats: Users are also prone to repeat the same characters in a password.
• Sequences: Numeric or alphabetic sequences.
• Dates: Years from 1900 to 2019 are considered and dates in different formats (e.g., 3-

13-1997, 13.3.1997, 1331997).

The SEcubeWallet Page 12 of 19
Document Classification: Confidential Release: 001

2.3.4 Custom passhprase generator

PwGen can generate pseudo-random pronounceable passwords, but to match the constraints
proposed by the zxcvbn library they should be easy to remember, but long enough to give
excellent entropy results. To fill this gap, a custom PassPhrase generator was developed.

The PassPhrase generator developed by the author works by randomly picking out words from
dictionary files. The user can tune the PassPhrase generation as follows:

• Dictionaries: The user must select appropriate dictionaries, containing a sufficiently
large number of lines (larger than 10000) to ensure the picked words are really
random. The English and Italian dictionaries used by zxcvbn are a good example. The
user can work with as many dictionaries as desired, and the format must be one word
per line. Only the first word of each line is counted, as everything after a space is
trimmed.

• Number of words: The user can configure the number of words the generated
PassPhrases are composed of. The recommended size is four, but it can be as long as
the user wants.

• Minimum Length of Words: With this option is possible to select only random words
whose length is higher than a certain value. This is to make sure the resulting
PassPhrase is not too short and therefore too insecure. The drawback here is that the
higher the selected threshold, the fewer the available words in the dictionaries.

• Only use infrequent words: If the dictionaries follow the same format as those used
for zxcvbn, that is, the words are ordered by frequency, having the most uncommon
words in the lower part of the dictionary, the user can then ask to generate
PassPhrases containing only unusual words. The drawback here is, again, fewer words
to choose from. The percentage of words that are used is configurable.

• Capitalize first letter: To make the PassPhrases more readable, the first letter of each
word can be capitalized.

2.4 Using the SecubeWallet

In order to compile the project with Qt (version 5.10 or higher required), open Qt and open
the project by selecting the file “Secure Wallet/code/secubewallet-
master/SecubeWallet.pro”.	Once the project is imported in order to start building the user
need to first build each “sub-modules”. Expand the project directory in the left-menu, than
starting from the SEfile directory, right-click on it and select “compile”. Proceed to build each
“sub module” with a bottom up approach, once each module has been correctly compiled the
user can compile the whole project. From now is not required to build each “sub module”
every time unless a clean is performed. 	

The SEcubeWallet Page 13 of 19
Document Classification: Confidential Release: 001

Figure 1 - Login windows

The main window is composed of the following elements:

• Table View: Used for displaying the wallet entries. It resizes smoothly with the
window, can be ordered by any of the columns, and the pass- words are hidden by
default but can be shown if the user wants to.

• Filters: The user can search in each of the table’s columns using filters. These filters
are implemented inside a separate container, but they resize together with the table.

• Entries Tool Bar: It is positioned to the left of the table. It has the actions:
add/edit/delete entries, show passwords, fit table, change date filter, launch domain
and select table.

• Tables Tool Bar: It is positioned in the top right of the table. It has the actions:
add/rename/delete table.

• Wallets Tool Bar: It is positioned to the top left of the table. It has the actions:
new/open/delete/save/save as/close Wallet.

• Menu Bar: It is positioned at the top of the window. It contains all the previous
actions, plus preferences and help.

• Status Bar: Positioned at the bottom of the window, it is used to display some
success/error messages to the user, and the current wallet name.

Figure 2 - Main window

The SEcubeWallet Page 14 of 19
Document Classification: Confidential Release: 001

2.4.1 Managing wallets in the SecubeWallet

The actions to manage users’ wallets are: New, Save, Save As, Open, Close, and Delete.

New Wallet action

When the user triggers the New_Wallet action, the first step to execute is to check if there is
another wallet opened and if it has unsaved changes. If, so the confirmation dialogue in Figure
3 is shown, so the user can decide whether to save the changes, discard them, or cancel the
creation of a new wallet.

Figure 3 - Save or Discard confirmation window

In case the user clicks Save, the Save_Wallet action is triggered before continuing. Discard
continues without saving, and Cancel returns without doing anything.

If the process continues, the next step is to close any previous in-memory database handlers,
save the table_view geometry (if any), and open a new in-memory database using the Qt class
QSqlDatabase.

An in-memory data base is used for editing. It has the advantage of being fast because there
is no access to the hard disk, and secure, because all the data is in the application memory
space, and therefore is protected by the OS.

The last step is to update the GUI state, by enabling some action like Add_Table and
Save_Wallet, and disabling others, like Delete_Table and Rename_Table.

The SEcubeWallet Page 15 of 19
Document Classification: Confidential Release: 001

Save Wallet action

To write the wallet to the disk, it is necessary to have a filename, so the first step is to check
if the user already entered one (from previous saves). If not, with the dialogue windows shown
in Figure 4, the user can choose the directory and the filename to save.

Figure 4 - Window for saving wallets and managing file names

The need for two dialogues instead of a regular file browser comes from the fact that the
chosen filename will not be readable from the OS, since SEFile also encrypts it. Similarly,
wallets already saved in the directory cannot be displayed with a regular file browser, so it is
necessary to use the SEFile function secure_ls.

After having chosen a filename, the next step is to read all of the tables in the current in-
memory database, row by row. Then, for each row to save, the Save_Wallet action creates
and stores in a temporary file one SQLite statement of the form INSERT INTO table
VALUES(row). All of them are then merged into a single command statement that is then
executed into the secured in-disk database. This optimization ensures only one access to the
SEcube™ and hard disk is performed.

Save Wallet As action

This action is very simple, it just clears the current filename (if any), and calls the Save_Wallet
action; as there is no filename, the user is forced to enter a new one. The only point to be
careful about is that, in case the Save_Wallet_As process is aborted, the previous filename
needs to be recovered, so before clearing, the filename is temporary stored in case it is
needed.

Open Wallet action

Similarly to what happens with the New_Wallet action, also in case of the Open_Wallet
action, the first step is to check for unsaved changes and in case to prompt the user whether
they have to be saved or discarded, with the dialogue in Figure 3.

The SEcubeWallet Page 16 of 19
Document Classification: Confidential Release: 001

If the user decides to continue, the dialogues in Figure 5 allow to choose from the list of the
existing wallets the one to open.

The application proceeds doing the inverse process of the Save_Wallet action, that is, read all
the tables from the secure in-disk database and create an in- memory database with this data.
First, the in-disk data base is opened as read only, and a list named tables with the existent
tables in it is generated. Then an in-memory database is created. Finally, for each table in
tables, its contents are read, a correspondent table is created in the in-memory database, and
the latter is populated with the read contents from the in-disk DB.

Figure 5 - Opening wallets action

Close Wallet action

This action is very simple. As usual, before closing the current wallet a check for unsaved
changes is performed, and the user is asked what to do with them using a confirmation
dialogue. If the user decides to continue, the in-memory database handler is closed, and the
table geometries are saved. Finally, the GUI is updated.

Delete Wallet action

Deleting a wallet involves deleting an in-memory database and/or an in-disk database.

If only the in-memory database exists (i.e., the user has not saved it to disk yet), the wallet is
simply closed, as in the previous section.

If there is no opened wallet, and the user wishes to delete an in-disk database, a select file
dialogue equal to the one in the Open_Wallet action is shown, where the user can choose the
wallet to delete. Then the wallet is deleted: the encrypted version of its filename is retrieved
using the SEcube™ API, and then the file in the disk is deleted using standard OS calls.

If both in-disk and in-memory wallets are to be deleted, that is, if there is an opened wallet
that has been already saved to disk, there is no need for a select file dialogue, as the filename
is known from the Save_Wallet action. The in-memory database handler is closed and the in-
disk encrypted wallet file deleted as explained above.

In all the above cases, a confirmation dialogue asks the user for confirmation prior deleting
the wallet.

The SEcubeWallet Page 17 of 19
Document Classification: Confidential Release: 001

2.4.2 Managing tables in the SecubeWallet

Actions regarding tables, their creation and display, are explained in the following. Qt
fundamental input structures are used, namely:

• The QInputDialog class, which provides a simple convenience dialog to get a single
value from the user;

• The QMessageBox class, which provides a modal dialog for informing the user or for
asking the user a question and receiving an answer;

• The QComboBox class, which provides a widget for a combined button and popup list.

Add Table action

With an in-memory wallet opened, the user can add a new table to it by simply entering a
name. With the QInputDialog class, it is possible to ask the user for a name easily. If the name
is valid, the SQLite query to add the table is executed. It may be the case the table already
exists, in which case the query execution returns an error and the user is notified.

Delete Table action

To delete a table, it is enough to use the SQLite DROP TABLE command. With the
QMessageBox the user is asked to confirm before deleting. After deleting, the table view
needs to be updated, to show the next table in the wallet. If there are no more tables, the
view is simply hidden, and other GUI elements like Add Entry disabled.

Rename Table action

To Rename a table the SQLite command ALTER TABLE RENAME TO is used. After this, a
QComboBox used to select the current table being displayed is updated to reflect the name
change.

Select Table

To allow the user to select one table to display out of the existent ones in the current wallet,
a QComboBox is added to the Entries Tool Bar. Each time a Wallet is opened/closed, or a table
is added/renamed/deleted, the items in the QComboBox are updated accordingly. When the
selected item in the QComboBox changes, the update procedure is triggered.

2.4.3 Managing entries in the SecubeWallet

Actions regarding entries, their creation and display, are explained in the following

Add Entry action

The AddEntry class allows users to input a new entry to one of the tables, using the subwindow
in Figure 6. This subwindow is composed of:

• Text input elements: To enter the Username, Domain, Description and Password, five
QLineEdit are used. The password needs to be entered twice to make sure it is the
desired one, and if it is not the same in both text fields, an error message is displayed.

The SEcubeWallet Page 18 of 19
Document Classification: Confidential Release: 001

The date is not entered by the user, but generated automatically based on the system
clock;

• Show password checkBox: By changing the echo mode in the pass- word QLineEdit,
it can be hidden or shown. It is hidden by default;

• Password Generator Button: This triggers one of two available generators: PwGen or
PassPhraseGen.

• Password Strength elements: A Progress Bar used to display the password strength
calculated with the zxcvbn library, a label to show some information about the
strength, and a button to open a subwindow showing the details of these calculations.
If the zxcvbn library has not been compiled by the user in the settings window, these
elements are disabled;

• Bottom buttons: The ok button is clickable only when all the text fields (except for
description, which is optional) are filled, and the two passwords coincide. The settings
button opens the settings subwindow so the user can customize the password
generators or the strength estimator without having to close the AddEntry
subwindow.

Figure 6 – Window for adding a new entry to a table

When the user clicks the ok button, the new entry needs to be added to the database.

Edit Entry action

The user can edit any of the entries by selecting one of the cells in the tableView and clicking
the Edit Entry button, or by double-clicking any of the cells. In either case, the data from the
selected row is retrieved and passed to new AddEntry object using its constructor. In this way,
the user is presented with an AddEntry subwindow where the input fields are already filled

The SEcubeWallet Page 19 of 19
Document Classification: Confidential Release: 001

with the current data. The user can then modify and save them by clicking ok. In this process
the ProxyModel is used instead of the model, because the former allows to identify the items
selected in the tableView.

Delete Entry action

Deleting an entry is very simple. The row index of the selected cell is used in the ProxyModel
method removeRow(row), and the change is submitted with submitAll. Before deleting, the
user is asked to confirm the action.

