Quad-SPI core for
FPGA on
SEcube™

Project Documentation

Release: October 2019

Quad-SPI core for FPGA on SEcube™ Page 2 of R5
Document Classification: Public Release: 001

f
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

Quad-SPI core for FPGA on SEcube™ Page 3 of R§
Document Classification: Public Release: 001

Proprietary Notice

The following document offers information, which is subject to the terms and conditions de-
scribed hereafter.

While care has been taken in preparing this document, some typographical errors, error or omis-
sions may have occurred. We reserve the right to make changes to the content and information
described herein or update such information at any time without notice. The opinions expressed
are in good faith and while every care has been taken in preparing this document, some typo-
graphical errors, error or omissions may have occurred. We reserve the right to make changes
to the content and information described herein or update such information at any time without
notice. The opinion expressed are in good faith and while every care has been taken in preparing
this document.

Authors

Vahid EFTEKHARI MOGHADAM vahid.eftekharimoghadam@studenti.polito.it

Nicolé MAUNERO CINI Cybersecurity National Lab) nicolo.maunero@polito.it

Paolo PRINETTO (President, CINI Cybersecurity National Lab) paolo.prinetto@polito.it
Gianluca ROASCIO CINI Cybersecurity National Lab) gianluca.roascio@polito.it
Antonio SCIALDONE antonio.scialdone@studenti.polito.it

Antonio VARRIALE (Managing Director, Blu5 Labs Ltd) av@blu5labs.eu

Trademarks

Words and logos marked with ° or ™ are registered trademarks or trademarks owned by Blu5 View
Pte Ltd. Other brands and names mentioned herein may be the trademarks of their respective
owners. No use of these may be made for any purpose whatsoever without the prior written
authorization of the owner company.

Disclaimer

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN “AS IS” BASIS
AND ITS AUTHORS DISCLAIM ALL WARRANTIES, EXPRESS, OR IMPLIED, INCLUDING BUT NOT LIM-
ITED TO ANY WARRANTY TAHT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
RIGHTS OR ANY IMPLIED WARRANTIES OR MERCHANTABILITY OR FITNESS FOR A PURPOSE. THE
SOFTWARE IS PROVIDED TO YOU “AS IS” AND WE MAKE NO EXPRESS OR IMPLIED WARRANTIES
WHATSOEVER WITH RESPECT TO ITS FUNCTIONALITY, OPERABILITY, OR USE, INCLUDING, WITH-
OUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PURPOSE,
OR INFRINGEMENT. WE EXPRESSLY DISCLAIM ANY LIABILITY WHATSOEVER FOR ANY DIRECT, INDI-
RECT, CONSEQUENTIAL, INCIDENTAL OR SPECIAL DAMAGES, INCLUDING, WITHOUT LIMITATION,
LOSS REVENUES, LOST PROFITS, LOSSES RESULTING FROM BUSINESS INTERRUPTION OR LOSS OF
DATA, REGARDLESS OF THE FORM OF ACTION OR LEGAL THEREUNDER WHICH THE LIABILITY MAY
BE ASSERTED, EVEN IF ADVISED OF THE POSSIBILITY LIKELIHOOD OF SUCH DAMAGES.

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

mailto:vahid.eftekharimoghadam@studenti.polito.it
mailto:nicolo.maunero@polito.it
mailto:paolo.prinetto@polito.it
mailto:gianluca.roascio@polito.it
mailto:antonio.scialdone@studenti.polito.it
mailto:av@blu5labs.eu

Quad-SPI core for FPGA on SEcube™ Page 4 of R5
Document Classification: Public Release: 001

W

%
9‘7“’”‘
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

Quad-SPI core for FPGA on SEcube™
Document Classification: Public

Page 5 of@
Release: 001

Contents

. Work presentation

B. System Architecture and Behavior

3.1. Design overvieV\]

3.2. LED-BLINKER Core

3.3. Quad-SPI Cord

3.3.1. Configuration
3.3.2. SengI
3.3.3. Receivg e

@. Application Program Interface

4.1. High-level driver

4.2. Concurrency issues

5. User Manual

5.1. Core installation

5.2. A first project: communicating with Arduing

5.2.1.

Hardware resourced

5.2.2.

Software resources

5.2.3.

Arduinosetup

5.2.4.

Connecting the two devices together

5.2.5.

Testing Quad-SPI-Send

5.2.6.

Testing Quad-SPI-Receivel

E. Appendiq

A.1. SEcube™ - Send

A.2. SEcube™ - Receive

SEcube™ Open Source Hardware and Software Security Oriented Platform

o O o

www.secube.eu

Quad-SPI core for FPGA on SEcube™ Page 6 of R5
Document Classification: Public Release: 001

1. Work presentation

The idea behind this project is to enhance the communication capabilities of the SEcube™ board,
making it able to communicate through a new interface, not supported natively by the SEcube™
Chip.

The developed IP core is synthetizable onto the SEcube™ FPGA, and makes use of its availale
I/0 pins to communicate with other devices using Quad-SPI. The transmission rate that can be
achieved with the provided design is 110 MB/s, which constitutes a great improvement (2x faster)
over the classic SPI interface already available on the SEcube™ .

This document is meant to present all the necessary information about the core. Starting from
a brief explanation of the protocol, the architecture of the core will be presented and explained,
followed by a step-by-step guide explaining how to embed it in the multi-IP environment already
available for the FPGA. Finally, an example project is presented, describing how it is possible to
use the core to communicate with another device through Quad-SPI.

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

Quad-SPI core for FPGA on SEcube™ Page 7 of R§
Document Classification: Public Release: 001

2. Overview

Quad-SPI is a communication standard interface which extends the classical SPI, widely spread in
the embedded system domain. As for Quad-SPI, it is mainly used for interfacing with embedded
memories, as it gives the possibility to write/read data at a sustained rate. It allows an half-duplex
communication between two devices, one master and one slave, which can exchange 4 bits per
clock cycle, as the name suggests, rather than a single one as in SPI.

More specifically, the lines involved in the transmission are 6. These are:

e SCLK: it is the clock of the communication, always generated by the master, used for syn-
chronization;

e CS:itis the chip-select signal, connected to the corresponding slave, and it is active low. In
case there is only one slave, this line is not strictly required;

e SDIO[3:0]: the 4-bit bidirectional data bus, which carries the bits to be transferred.

Beside the physical interface, there are few required parameters, which are introduced here
through a simple example.

At first, when there is no transmission occurring, the SCLK signal remains idle on a constant level,
depending on the clock polarity parameter (hereinafter referred as CPOL):

e CPOL = 0 means that the clock is low when idle;
e CPOL =1 means that the clock is high when idle.

Whenever the master wants to communicate with a slave device, the chip-select signal is driven
low by the master, and kept low for the entire transmission window. The master then generates
n clock cycles. Every clock cycle, 4 bits (1 nibble) are sent, either by the master or by the slave.
Therefore, the other two parameters of the transmission that must be known are the number
of nibbles to transmit (because the master has to generate the clock signal for a precise number
of cycles), and the frequency of the clock signal. This last is needed in order to carry out the
transmission correctly, because the slave device must be able to support the frequency of the
clock generated by the master. During the transmission, data changes at every clock edge, and is
sampled on the opposite clock edge. This last feature is defined by the last parameter, the clock
phase (hereinafter referred as CPHA):

e CPHA = 0 means that data changes on traling edge and it is sampled on leading edge;
¢ CPHA =1 means that data changes on leading edge and it is sampled on trailing edge.

Finally, to complete the transmission, CS signal is deactivated and the SCLK returns idle. In Table ﬂ],
all the possible combination of clock phase and clock polarity are summarized, with the resulting
behavior.

CPOL CPHA | Idle CLK Datachange Sampling

0 0 0 Falling Rising
0 1 0 Rising Falling
1 0 1 Rising Falling
1 1 1 Falling Rising

Table 1: Behavior for each combination of CPOL-CPHA

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

Quad-SPI core for FPGA on SEcube™ Page 8 of R5
Document Classification: Public Release: 001

Let us assume a device needs to transmit 6 nibbles to another one. Before starting, the previously
discussed parameters are to be defined according to desired behavior. In this case, we assume
that CPOL is set to 0 and CPHA to 1. Then, the CS signal is deactivated, and on each rising edge of
the clock, a nibble is sent. On the falling edge, the receiver samples the I/0 lines. In Figure , the
waveforms for the transmission are shown.

o iiiiiE i

SDIO 0

SDIO 2

A
SDIO 1 X
X

>

SDIO 3 X

Figure 1: Waveforms related to a transmission of 24 bits with CPOL=0, CPHA =1

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

Quad-SPI core for FPGA on SEcube™ Page 9 of R5
Document Classification: Public Release: 001

3. System Architecture and Behavior

This Section is meant to give an overview of the implemented design. Notice that the core is
meant to work with the multi-IP architecture already designed for the SEcube™ FPGA, based on
the IP Manager component. To keep things brief, the structure will not be presented nor explained
again, except in case of some examples, where it is necessary.

3.1. Design overview
The design is composed of two cores:

QSPI CORE Identified by ID = 0x01, it is the core providing QSPI capabilities;

LED-BLINKER CORE Identified by ID = 0x02, it provides the possibility to control the LEDs of
the SEcube™ DevKit for debug purposes, as will be better explained later.

Plus, the FPGA hosts also the IP Manager component and a Data Buffer of 64 16-bit shared mem-
ory locations for exchanging information with the CPU. Therefore, the overall architecture that
will be mapped onto the FPGA is the one in Figure .

——» SCLK
QSPI CORE 3 sowo
#1 ———> SDIO1
————) SDIO2
———) SDIO3
DATA BUFFER <;:(> IP MANAGER
LEDO
LED —>
BLINKER
CORE LED7
#2 —>

Figure 2: FPGA internal architecture.

3.2. LED-BLINKER Core

This section describes the additional core that has been inserted for testing purposes in the design,
since it is not necessary for Quad-SPI to work.

The core is identified by the ID = 0x02. It is initially inactive, waiting for a request coming from
the CPU. When it comes, the core reads a byte from the address 0x01 of the data buffer. These
8 bits are then used to drive the 8 LEDs of the FPGA accordingly. In practice, if a bit is zero, the
corresporéding led will be turned off, otherwise it will be turned on. The bit are mapped as shown
in Figure 3.

https://www.secube.eu/site/assets/files/1164/wiki_fpga_-_rel004_190403.pdf

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

https://www.secube.eu/site/assets/files/1164/wiki_fpga_-_rel004_190403.pdf

Quad-SPI core for FPGA on SEcube™ Page 10 of P9
Document Classification: Public Release: 001

PR
- C5011RSQRE CSR12
u4e00 Xseae

Figure 3: The mapping between the bit of the word read from the data buffer and the led on the
SEcube™ .

The core can be used to visualize the word written by the CPU. Therefore, it will be particularly
useful when testing the reception of bits over Quad-SPI. As a matter of fact, when the SEcube™
receives data over Quad-SPI, it can be forwarded from the Quad-SPI core to the IP-BLINKER, check-
ing whether they are the expected bits or not. The core is really simple and low-area, so it does
not affect the overall design significantly.

3.3. Quad-SPI Core

The core, whose architecture is shown in Figure @], is structured as an FSM-D. Its activities can be
summarized into two main groups: reading/writing from/to the data buffer to communicate with
the CPU, and sending/receiving data through Quad-SPI to communicate with a slave device. In
the following, the communication with the CPU is dealt from an high-level point of view. For a
detailed explanation of the protocol, how transactions are opened and similar, please refer to the
manual available onlineZ.

After the reset, or after any operation is finished, the core enters in an IDLE state. At each
clock cycle, it monitors the enable signal coming from the IP Manager. When that signal is as-
serted, meaning that the CPU has requested the functionalities of the core, this last checks for
the received OPCODE. According to it, three are the possible choices. Either the CPU wants to
configure the core, or it wants to send/receive some data. Each one of them is discussed right
after.

3.3.1. Configuration

The phase is entered whenever the core in IDLE state receives a request from the CPU with the
OPCODE = 0x00. As discussed in Section , Quad-SPI requires some parameters before the trans-
mission can take place: the clock frequency, the clock polarity and the clock phase. This state is
committed just to their definition. Therefore, as soon as it is entered, the core reads from the
data buffer two 16-bit words, from addresses 0x01 and 0x02 respectively. They are supposed to
contain all of the three parameters. More specifically, the structure of the two words is in Figure
B and Figure E respectively.

As it can be seen, the clock divisor is expressed on 24 bits, allowing to use a clock frequency which
is really low (that will be really useful for debugging purposes). The minimum value this parame-
ter can assume is 1. Once they have been read, they are stored inside the dedicated registers, to
be used for all the future communications up to a new reconfiguration. Notice that this configu-
ration must be performed at least once before any other operation, otherwise the core will not

https://www.secube.eu/site/assets/files/1164/wiki_fpga - rel004 190403.pdf

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

https://www.secube.eu/site/assets/files/1164/wiki_fpga_-_rel004_190403.pdf

Quad-SPI core for FPGA on SEcube™ Page 11 of P9
Document Classification: Public Release: 001

CONTROL UNIT

DATA
T
N |

CONFIGURATION <« NIBBLES € COUNTER }(J

ADDRESS
GENERATOR

CPOL SCLK '

TO IP < é CPHA » SDIOO [« >

MRS = 0x3F DIVISOR > SDIO1 |« < TO/ FROM
- > SDIO2}€ . EXTERNAL DEVICE
NIBBLES
> SDIO3}< <
Vl CS Iy
YYY

OXFFFF

| EFPE L—>ISUSPEND RAM

TOIP
MANAGER | DATA DATA
B IN out ‘—‘

MUX

}

Figure 4: Overview of the architecture of the QSPI core.

LOWER BITS CLOCK DIVISOR CPOL CPHA

15 2 1 0

Figure 5: Structure of the control word read from address 0x01 of the data buffer.

work properly. Once the configuration registers are updated, the core exits the CONFIGURATION
state and goes back to IDLE, waiting for the next request.

3.3.2. Send

This state is in charge of establishing a communication with the slave device that is supposed to
be connected to the pin of the FPGA, as we will see in the next Section. It is entered whenever the
core in IDLE state receives a request from the CPU with OPCODE = 0x01. In order to handle the
transmission, the core needs to know how many nibbles are to be sent. Thus, first the core reads
from address 0x01 of the data buffer this value. This is loaded in the corresponding register, where
it will be kept until the end of the transmission. Once the number of nibbles is known, the core
reads from the data buffer the exact number of words, considered that one word is composed by
four nibbles.

The size of the transmission has been fixed to 1024 as a technical choice. This means that for each
transaction the CPU opens with the core, a transfer of 2KB at maximum is allowed. In order to
make this possible, the core reads the buffer circularly. Therefore, once the end is reached, if the
number of words to send is greater than 63, the core starts reading again from address 0x01.

An internal storage is needed to store the data read from the data buffer. To this end, the RAM
available on the FPGA has been exploited. This choice helps reducing the space occupied by the
core, leaving space for the co-presence of other cores. The dimension of the RAM has been fixed

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

Quad-SPI core for FPGA on SEcube™ Page 12 of P9
Document Classification: Public Release: 001

UNUSED HIGHER BITS CLOCK DIVISOR

15 9 0

Figure 6: Structure of the control word read from address 0x02 of the data buffer.

to 2KB (maximum size of the transfer). To sum up, when this state is reached, one word is read
from the data buffer at CPU write cycle, and is stored inside the internal RAM. In case the end of
the data buffer is reached, the core starts reading again from address 0x01. This process repeats
until the words are over, and we have all of them stored inside the internal storage of the core.
At that point, according to how to communication with the core has been opened, there are two
possible scenarios:

¢ The CPU opened a transaction in polling mode, so it waits for the transmission to be over,
without closing the transaction;

¢ The CPU opened a transaction in interrupt mode, so the transaction is closed as soon as the
last word is written inside the internal RAM.

In both cases, when the reading process is terminated, the core enters in the transmission phase.
Hence, the CS signal is driven low, signaling to the slave device that a transmission is about to
start. According to the parameters, which have been configured as explained in Section , the
core starts generating the clock signal (SCLK) for the transmission with the proper frequency, and
the data (read from the internal RAM) is sent on the four data lines (SDIO[3:0]) according to the
CPOL-CPHA configuration, as explained in Table ﬁ] Obviously, when the number of sent nibbles
reaches the limit, the core asserts the CS signal, so that the slave knows that the transmission is
over, the SCLK returns idle, and the core exits from the transmission state. Then:

¢ If the CPU opened a transaction in polling mode, the core writes the unlock code at address
0x3F. The CPU, which is continuously reading from that address, reads the unlock code as
soon as it is written, and disables the core;

¢ If the CPU opened a transaction in interrupt mode, the core raises an interrupt and wait for
an acknowledgement. Sooner or later, the CPU will respond, and the core will be disabled.

At that point, it returns to the IDLE state, waiting for another transaction.

3.3.3. Receive

This state is entered whenever the core in IDLE state receives a request from the CPU with OPCODE
=0x02. As already discussed for the sending part, the core needs to know how many nibbles must
be received, because the SCLK signal must be generated for that precise number of times. Hence,
the core expects the CPU to write at address 0x01 of the Data Buffer the expected number of
nibbles. Once it is read, it is stored inside the corresponding register. In case the transaction
was opened in polling mode, the CPU waits, otherwise it is closed. At that point, the core enters
the RECEIVING state by driving low the CHIP SELECT signal, to notify the slave that it is ready to
receive data. It generates the SCLK with the frequency set during the configuration phase, and
samples the bits on the four data lines, according to CPOL and CPHA, as explained in Table @ Also
in this case, the received data is stored inside the internal RAM, one nibble per time. Once the
end of the expected nibbles has been reached, the clock returns idle, the CS signal is asserted and
the communication stops. At that point, all the data are in the internal RAM of the core, but they

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

Quad-SPI core for FPGA on SEcube™ Page 13 of P9
Document Classification: Public Release: 001

must be read from the CPU. According to how the transaction was opened, there are two possible
scenario:

¢ The CPU opened the transaction in polling mode, so the core unlocks the CPU writing the
unlock code at address 0x3F, and then it resumes;

e The CPU opened the transaction in interrupt mode, so the core raises an interrupt and waits
for the CPU to respond. As soon as it does, the CPU sends an acknowledgement to the core,
so that it can resume.

Whatever the modality, once the core resumes its activity, the CPU starts waiting for a fixed
amount of time. This is necessary because the core needs some time to copy the content of
the internal RAM inside the Data Buffer. Once this time is elapsed, the CPU reads from the Data
Buffer the data received. However, as already stated, the maximum size per transfer is 2KB (1024
words of the data buffer), which means that once the core has copied 63 words to the Buffer, it
has to stops. Meanwhile, the CPU, which was waiting for a certain amount of time (long enough
to allow the core writing 63 words), reads the data. Each time a read is completed, the core re-
ceives a signal proving that the CPU has read a word. Once the core has received 63 times this
kind of notification, it resumes the copying process (starting again from address 0x01), whereas
the CPU stops reading, and it starts waiting again. This process repeats until all the words received
through Quad-SPI from the slave are read by the CPU. Notice that, even though the number of
words is lower than 63, to keep things simple, the CPU still waits for the time necessary to write
63 words. Anyhow, when the process is over, the CPU disables the core, which returns to the IDLE
state waiting for the next transaction.

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

Quad-SPI core for FPGA on SEcube™ Page 14 of P9
Document Classification: Public Release: 001

4. Application Program Interface

This Chapter describes the communication driver developed for interfacing the user application
and the Quad-SPI core on the FPGA.

For a correct communication, the complete driver should be composed of two layers: a high- level
one, composed of the specific functions for managing the task of each IP core, and a low-level one,
containing the low-level functionalities for the communication with the FPGA. The developed APIs
take into account the mutual concurrency of high-level drivers.

The project presented here focuses on providing the application programmer a reliable high-level
layer, over which it is possible to create the program exploiting all the functionalities of the core.
Before using any of the functions described in this Chapter, the FPGA should be configured to
support the IP Manager environment, without forgetting to insert calls to

B5 FPGA_Programming();
FPGA_IPM_ init();

in order for the FPGA to be ready. FPGA_IPM_init() also initializes a semaphore to resolve
concurrency issues, as we will see later. Once it is done, you can start writing your own program.

4.1. High-level driver

The high-level communication with the core is implemented by the functions declared in the
header file “gspi_fpga.h”. Such functions are supposed to be called by the user application code,
without having almost any knowledge of the specific hardware implementations and of the de-
tails about the micro-controller and the FPGA provided by SEcube™ . Because of the nature of
the concerned core, three types of APIs have been provided. These are:

Configuration - Used to configure the core;
Transmit - Used to send data from the SEcube™ to a slave device;
Receive - Used to receive data from a slave device.

Due to foreseen usability and the user convenience, the transmission function supports three
different width: 8, 16 and 32 bit. The user should only pass the address where the data is stored,
and then it will be treated differently (as 8, 16, or 32 bits wide) according to the called function.
The function is responsible of making the data compatible with the interface of the core. As for
the reception, data is considered only 16-bit wide, and it is written to the address provided by the
user. When finished, it is up to the user converting the data to the appropriate data length before
using it. Right-after, the APIs and their explanation are listed.

int FPGA_QSPI_CONF(uint32_t clk_divisor, uint8_t clk _polarity,
uint8_t clk_phase)

This function is used to configure the Quad-SPI core, therefore it is mandatory to call it at the
beginning of any application that makes use of the core, otherwise it will not work as expected.
The parameters are:

e clk_divisor, which sets the clock divisor, that will be used to obtain the desired clock
frequency starting from the one of the FPGA. It can be any number between 1 and 224 — 1;

e clk_polarity, which sets the polarity of the clock. It can be 0 or 1;
e clk _phase, which sets the phase of the clock. It can be 0 or 1.

For a detailed explanation of these parameters, please refer to Section .

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

Quad-SPI core for FPGA on SEcube™ Page 15 of P9
Document Classification: Public Release: 001

int FPGA_QSPI_SEND_8bI(uintl6_t n_nibbles, uint8_tx data, int
interruptMode);

This function allows to open a transaction with the core in send mode, to transmit 8-bit wide data.
The following parameters are required:

e n_nibbles: it indicates how many groups of 4 bits the user is willing to send. For example,
16 bits are composed of 4 nibbles;

e data: itis the initial address in memory where the data to be sent is stored;

e interruptMode: itindicates how the transaction should be opened: polling if 0, interrupt
if 1.

The opening of the transaction is possible only if there are no active transactions. Any other
transaction is blocked by the software semaphore. The procedure to open a transaction follows
these steps:

1. Check if the transaction can be established: if not, the request is rejected;
2. Lock the resource (FPGA) by decrementing the semaphore;

3. Update control variables to the new values;

4. Perform a write operation at address 0x02 of the buffer;

5. Send a positive response to the calling function if everything went fine.

The function returns a value(1) that notifies whether the operation was correctly performed.

int FPGA_QSPI_SEND_16bI(uintl6_t n_nibbles, uintl6_tx*x data, int
interruptMode);

int FPGA_QSPI_SEND_32bI(uintl6_t n_nibbles, uint32_tx*x data, int
interruptMode);

These two functions are basically the same of the previous one, except for the fact that they deal
with 16-bit and 32-bit wide data respectively.

int FPGA_QSPI_RECEIVE_16bI(uint16_t n_nibbles, uint16_tx data,
int interruptMode);

This function is used to received data from a slave device. As already stated, data is treated as
16-bit wide. The parameters are:

e n_nibbles: it indicates how many groups of 4 bits the user is willing to receive;
e data: itis the initial address in memory where the user wants to store the received data;

e interruptMode: itindicates how the transaction should be opened: polling if 0, interrupt
if 1.

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

Quad-SPI core for FPGA on SEcube™ Page 16 of P9
Document Classification: Public Release: 001

4.2. Concurrency issues

Concurrency is a big concern that may affect the correct behavior of the system if not correctly
managed. As we said, the management is operated through the implementation of a semaphore
inside the driver that allows the execution of one and one only transaction at the time. The
semaphore is managed by the following functions:

1. FPGA_QSPI_CONF (), that configures it;

2. FPGA_QSPI_SEND XbI(), that checks the value of the semaphore. In case the resource
is unlocked, the function zeroes the semaphore and allows the beginning of the current
transaction. Otherwise, the function immediately returns with an error;

3. FPGA_QSPI_RECEIVE_16bI(), thatincrements the semaphore releasing the resource if
and only if there is an active transaction and the caller of the function is the caller that has
opened the active transaction.

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

Quad-SPI core for FPGA on SEcube™ Page 17 of P9
Document Classification: Public Release: 001

5. User Manual

The following Chapter is committed to explaining how to use the core, starting from its insertion
in the development environment.

5.1. Core installation

To start with, you need to add the two cores to the working environment, that is the one contain-
ing the IP Manager and the Data Buffer. Hence, you need a custom Device-Side SEcube™ project
opened in Eclipse, ready to work with the FPGA available on the SEcube™ . To do so:

1. Download the files related to the IP Manager and the data buffer from the SEcube™ siteE;

2. Create a new Device-Side project by following the steps that are listed in the related docu-
mentation. Be sure to add all the necessary files to communicate with the FPGAE;

3. Create a new Lattice Diamond™ project. When you are asked to import the VHDL files, be
sure toinclude the files named “CONSTANTS.vhd”, “DATA_BUFFER.vhd”, “IP_MANAGER.vhd”,
which you downloaded at point 1. Moreover, you must add all the VHDL files related to the
Quad-SPI and the Led Blinker. These files are located inside the folder named ”"VHDL”;

4. Proceed with the creation of the project, as explained in Section 6.3.1 of the IP Manager
documentation;

5. Once the project is created, synthesize it (check that no timing errors are present) and pro-
duce the files containing the bitstream by following the steps contained in Sections 6.3.2
and 6.3.3 of the IP Manager documentation. You should have obtained two files with name
ending with “_algo.c” and “_data.c”, which will be used later;

6. Proceed by adding everything to the Device-Side project, as explained in Section 6.4 of the
IP Manager documentation. When you are asked to substitute the content of the two arrays
in the file “TEST_FPGA.h”, use the files obtained at point 5;

Now the bitstream describing the architecture is statically saved on the flash memory image to
be programmed into the device. To use its functionalities, you need to include the files containing
the correlated APIs, with the following steps:

1. To import the necessary files in your Device-Side project, select "File » Import...”, then
“Filesystem” and press “Next”

2. Browse to the directory where the API libraries for the Quad-SPI core are located, which is
called "API”

7 n

3. Select all the files inside the folder (“gspi_fpga.c”, “qspi_fpga.h”). You might want to set
also “Destination Folder” to “SEcubeDevBoard/Application/src” and then press “Finish”

4. Open the file “Fpgaipm.h” and include the file “gspi_fpga.h” by inserting the following line
after all the others inclusions:

#include "qgspi fpga.h”
5. In the same file, modify the function EXTI9 5 IRQHandler(), which is located at the

bottom of the file, adding the following lines to the switch-case statement, necessary to
call the interrupt handler when an interrupt request comes from the core:

3Download the files here: https://www.secube.eu/site/assets/files/1164/fpga 190403.zip
*https://www.secube.eu/site/assets/files/1164/wiki fpga - rel004 190403.pdf

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

https://www.secube.eu/site/assets/files/1164/fpga_190403.zip
https://www.secube.eu/site/assets/files/1164/wiki_fpga_-_rel004_190403.pdf

Quad-SPI core for FPGA on SEcube™ Page 18 of P9
Document Classification: Public Release: 001

case 1:
handle IR();
break;

Now the core is correctly inserted in the environment. You can now create your own program, in
the file “main.c”, and use the core to send and receive data over Quad-SPI, as described in section
E]. Once finished, you may want to program the SEcube™ , by following these simple steps:

1. Save the changes to all files

2. Go to "project » Build Configuration » Set Active” and ensure the tick is on “Release”
3. Build the project

4. Connect the SEcube™ to the PC

5. Flash the produced executable on the device by right-clicking on it in the Project Explorer
and selecting the Release binary under “Target » Program Chip” (i.e., select the label con-
taining the string “/Release”)

When the process starts, the LEDs associated to the FPGA will be set in a weak pull-up state,
meaning that the FPGA is being programmed. At the end, they should turn off. As soon as they
turn off, the program you wrote starts executing.

You will need a second device which should be programmed accordingly, connected to the SEcube™
, for sending and receiving data over Quad-SPI. Read Section for an example of how a possible
communication can be established.

5.2. A first project: communicating with Arduino

To check whether the procedure in Section @ has been executed correctly without errors, and
prove that the core is actually working, you may want to carry out a simple experiment. The pur-
pose of this Section is to provide a tutorial that illustrates, step-by-step, how it is possible to send
and receive data through the core. The slave device that will be used in the communication is an
Arduino™ UNO board, from Arduino™ . It has been chosen because it is easy-to-use, cheap, and
can be reused for a lot of other projects. Moreover, it is supported by all the operating systems,
its setup takes few minutes, and there is a lot of documentation online, which makes the devel-
opment really easy.

As already said, Quad-SPI allows to send and receive data. Hence in the following, we will test the
core in both operating conditions. First, we will be using the Arduino™ board to read data sent
by the SEcube™ , and then we will use it as a transmitter, sending the data to the SEcube™ .

5.2.1. Hardware resources
The hardware you will need is:
e PC
e SEcube™ DevKit
¢ Arduino™ UNO board (it can be bought online for 20(=Z)E

e 6 F/M jumpers, to connect the Arduino™ UNO to the SEcube™ .

®https://store.arduino.cc/arduino-uno-rev3

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

https://store.arduino.cc/arduino-uno-rev3

Quad-SPI core for FPGA on SEcube™ Page 19 of Pj
Document Classification: Public Release: 001

5.2.2. Software resources

In addition to the software necessary to create the Device-Side project and synthesize the VHDL
code, you will need the Arduino IDE, to program the Arduino UNO board. It can be downloaded
from the Arduino official sitefl. The supported operating systems are Windows, Linux and Mac
0sS.

5.2.3. Arduino setup

Let’s start by gaining some familiarity with the Arduino™ board and its development environment.

1. Start by downloading the Arduino IDE from the official website, choosing the version ac-
cording to your operating system, and install it

2. Once the installation is terminated, open it
3. Connect the Arduino™ UNO board to the USB port of your PC

4. In the Arduino IDE, go to "Tools » Board”, a list of boards should appear. Select the “Ar-
duino/Genuino UNO” board, as in Figureﬂ

Help B 3 = %@} Tuel40AM Q @ =
Auto Format ®T

Boards Manager... sketch_sep‘oéaw\ Arduino 1.8.9

Archive Sketch

Fix Encoding & Reload Arduino AVR Boards

Manage Libraries... 88l Arduino Yin

Serial Monitor Bix 4Vl v Arduino/Genuino Uno sketch_sep03a
Serial Plotter ©%L Arduino Duemilanove or Diecimila void setup() {

Atiuno Namo // put your setup code here, to run once:

Arduino/Genuino Mega or Mega 2560

Board: "Arduino/Genuino Uno" Ardu?no Mega ADK
Port » Arduino Leonardo

WIiFi101 / WiFiNINA Firmware Updater N,

void loop(Q)
// put your main code here, to run repeatedly:

Get Board Info | Arduino Leongrdo ETH
. Arduino/Genuino Micro

Programmer: "AVR ISP" > Arduino Esplora

Burn Bootloader Arduino Mini

}

Arduino Ethernet
Arduino Fio

Arduino BT

LilyPad Arduino USB
LilyPad Arduino
Arduino Pro or Pro Mini
Arduino NG or older
Arduino Robot Control
Arduino Robot Motor
Arduino Gemma
Adafruit Circuit Playground
Arduino Ydn Mini
Arduino Industrial 101
Linino One

Arduino Uno WiFi

ESP32 Arduino

ESP32 Dev Module

ESP32 Wrover Module

ESP32 Pico Kit

Turta loT Node

TTGO LoRa32-OLED V1

XinaBox CW02

SparkFun ESP32 Thing

u-blox NINA-W10 series (ESP32)

Widora AIR

Electronic SweetPeas - ESP320
v

Arduino/Genuino Uno on /dev/cu.usbmodem14201

Figure 7: Selecting the Arduino™ Uno Board

5. Select “File » Examples » 01.Basics » Blink”. A new window, containing some code should
open. It is a script that makes the LED of your Arduino™ UNO blink

®https://www.arduino.cc/en/Main/Software

W

%
50"’”"
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

https://www.arduino.cc/en/Main/Software

Quad-SPI core for FPGA on SEcube™ Page 20 of Pj
Document Classification: Public Release: 001

6. Select "Sketch » Upload”. Now the code is being downloaded on the board. At the end
of the process, the LED should start blinking, meaning that everything has been setup cor-
rectly.

You may notice that the script is made of two functions: setup() and loop(). The first one
should contain code that is executed only one time, at the beginning. On the contrary, the code
inside the 1oop () function, is executed repeatedly after the setup () has finished. This must be
the structure of every Arduino program.

Another important feature that we will use for our communication example is the Serial Monitor.
You can open it by clicking on the icon in the top-right corner of the window, see Figure E It shows
the value that are being printed by your program. We will use it to print the data we are receiving,
or sending.

| NON | sketch_sepO1a | Arduino 1.8.9

sketch_sep0la §

mid catinf S

Figure 8: The serial monitor where data is printed.

If there are no errors, you can proceed to the next section, otherwise, be sure to resolve any issue
before moving on.

5.2.4. Connecting the two devices together

This section contains information related to the connection of Arduino™ to the SEcube™ .

As stated in Section E, the communication over Quad-SPI uses 6 lines: 1 for the clock, 1 for the
chip select, and 4 lines for the data. In Figure E, you can look at which are the pins of the SEcube™
that are connected to the Quad-SPI core, and how they are used. These lines have to be attached
to 6 pins on the Arduino™ UNO. More precisely, if you are going to use the code associated to
this document, the pins are configured in this way:

e D12 for the clock
e D13 for the chip select
e D8-D7-D4-D2 for SDIO[3:0] respectively.

However, this configuration is not mandatory. You can use whatever digital pins of the Arduino™
UNO, as long as you change the code accordingly. When you are finished, the connection should
look like in Figure @ Finally, connect both the SEcube™ and the Arduino™ to your PC.

< E
50“’”'
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

Quad-SPI core for FPGA on SEcube™ Page 21 of Pj
Document Classification: Public Release: 001

202rMS

P
Y
8
0
"
i

P
Py
e
b))
S

V) 0
z z
g 3
:

Figure 9: The pins of the SEcube™ that are used by the Quad-SPI core.

< E
50“’”'
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

Quad-SPI core for FPGA on SEcube™ Page 22 of P9
Document Classification: Public Release: 001

5.2.5. Testing Quad-SPI - Send

Let’s deal with the situation in which we want to use the SEcube™ as master of the communication
to send some data to the Arduino™ UNO. We are going to work in polling mode, but nothing
changes if interrupt is used instead. The necessary code is contained in @ An explanation of
the code follows, to make things clearer.

First of all, considering how the Quad-SPI works, as explained in Section , we must initialize the
core by setting its parameters: clock divisor (which will be used to determine the clock frequency),
the clock polarity, and the clock phase. In this example, we will be using a really high clock divisor,
resulting in a slow transmission. This choice is due to the fact that we are using as a slave device,
a board that does not provide native support for Quad-SPI. Therefore, the piece of code we are
going to use, is a simple loop that reads the value on the four digital pins connected to the data
pins of the SEcube™ . This implies that, in case a lower clock divisor is utilized, we will not be able
to read all the data through the Arduino™ UNO because of the high speed of the transmission.
Therefore, for the purpose of the experiment, do not change it. As for the clock polarity and the
clock phase, both have been set to one.

Once the core has been configured, we must declare the array of the data we want to send. In
this case, we have declared an array of 10 numbers, each one expressed on 16 bits. Then, using a
for loop each element is initialized, from 0 to 9. Once completed, we can send the data through
Quad-SPI by simply calling the associated function. Remember that the function requires also the
number of nibbles we want to send, that is easily obtained:

(words x width)

: &

nibbles =

To embed it in your project, follow these steps:
1. Open the device-side project
2. Open the file “main.c”
3. Copy paste the code right after the call to the function B5_FPGA_Programming()
4. Save the changes to all files and build the project
5. Connect the SEcube™ to the PC

6. Runthe project by right-clicking onitin the Project Explorer and selecting the Release binary
under “Target » Program Chip” (i.e., select the label containing the string “/Release”)

7. Wait few minutes. The LEDs of the FPGA should be set in a weak pull up state, meaning
that it is being programmed, and at the end, all of them should be turned off.

The part related to the SEcube™ is over. Now we need the Arduino™ to be able to read the data
we are sending. To do so, follow these steps:

1. Open the Arduino IDE

2. Goto”File » Open”, and select the file "QSPI-Receive.ino”, located in the folder "Arduino/QSPI-
Receive”

3. Go to "Sketch » Upload”, and wait for the process to finish
4. Open the serial monitor, by clicking on the icon placed in the top-right part of the screen
5. In the serial monitor page, be sure that the baud rate is set to 19200.

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

Quad-SPI core for FPGA on SEcube™ Page 23 of P9
Document Classification: Public Release: 001

The code contained in the Arduino script is straightforward. As explained in Section @, when the
master starts the communication, the CS signal is set to 0.

Therefore, since the arduino board is the slave device, it waits for the chip select signal to go to 0.
Once a zero has been read, 4 bits are read on each rising edge of the clock (because we set CPOL
=1 and CPHA =1, check the Table ﬁ] to see when the sampling shall be performed), and they are
printed on the serial monitor.

Now the code for both devices are ready. If they are not connected to each other already, please
connect them as described in . When everything is connected, press the RESET button (it is
the first button next to the LEDs of the FPGA) on the SEcube™ and wait few minutes. Remember to
not close the Serial Monitor. At some point after the reset (as soon as the FPGA is programmed),
the SEcube™ should start sending the bits, which should appear on the serial monitor.

5.2.6. Testing Quad-SPI - Receive

The procedure and the motivations required for testing the reception mode, are almost equal to
one used for the test of the transmission mode. As first, let’s consider the code for sending data
from the Arduino™ board, which is located in “Arduino/QSPI-Send”. Initially, the slave is waiting
for the master to initiate the communication, therefore it waits until the chip select signal is set
to zero. As soon as a zero is detected, each falling edge of the clock, a new value on the digital
pins is written. When the chip select will be asserted again from the master, the process will stop.
To upload this code:

1. Open the Arduino IDE

2. Goto”File » Open”, and select the file "QSPI-Send.ino”, located in the folder “Arduino/QSPI-
Send”

3. Go to "Sketch » Upload”, and wait for the process to finish
4. Open the serial monitor, by clicking on the icon placed in the top-right part of the screen
5. In the serial monitor page, be sure that the baud rate is set to 19200.

On the other side, the SEcube™ will now be in charge of receiving and storing the data that Ar-
duino™ UNO will send. The code to add in the main file of the SEcube™ project is reported in .
A brief explanation follows.

Once the core has been initialized with its parameters, the function to receive data is called, and
the data will be stored in the desired array passed to the function. Once the reception is over, you
may want to check what you have received. This is where the additional core, the LED-BLINKER
(section @) comes in help. Once the communication with Arduino™ is over, for each 16-bit
word we have received, we split it in two parts of 8-bit each. Each of these two parts is sent to the
LED-BLINKER core. In this way, the LEDs on the SEcube™ will turn on/off, according to the data
received, and the correctness can be proved. To embed the code in your project, follow these
steps:

1. Open the device-side project

2. Open the file "main.c”

3. If you previously added the code related to Section , please remove or comment it
4. Copy paste the code right after the call to the function B5_FPGA_Programming()

5. Save the changes to all files and build the project

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

Quad-SPI core for FPGA on SEcube™ Page 24 of P9
Document Classification: Public Release: 001

6. Connect the SEcube™ to the PC

7. Runthe project by right-clicking on it in the Project Explorer and selecting the Release binary
under «Target » Program Chip» (i.e., select the label containing the string “/Release”)

8. Wait few minutes. The LEDs of the FPGA should be set in a weak pull up state, meaning
that it is being programmed, and at the end, all of them should be turned off.

Notice that, if you have already uploaded your code on the Arduino UNO, during the program-
ming phase the CS pin is set to 0. This is recognized from Arduino™ as if it were the start of the
transmission, even if it is not. Therefore, you should notice on the serial monitor that while the
FPGA is being programmed, the transmission start. If this is the case, once the FPGA has been
programmed, re-upload the program to Arduino™ .

At some point, you should see on the serial monitor of Arduino that the transmission is started.
When the transmission will be over, the LEDs of the SEcube™ will reflect that data sent by Arduino.

W

@
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

Quad-SPI core for FPGA on SEcube™ Page 25 of P9
Document Classification: Public Release: 001

A. Appendix

Here are reported all the piece of code used in the example.

A.1. SEcube™ - Send

FPGA_QSPI_CONF (16777215, 1, 1);
uintlé_t data _to send[10];
for (int 1 = 0; i < 10; i++) {
data_to_send[i] = 1i;
¥
FPGA_QSPI_SEND _16bI(40, &data _to _send[@], false);

A.2. SEcube™ - Receive

FPGA_QSPI_CONF (16777215, 1, 1);
uintlé_t data_to receive[10];
FPGA_QSPI_RECEIVE_16bI(9,&data_to_receive[@], false);

HAL_Delay(10000);

FPGA_IPM_DATA temp;

for (int 1 = 0; i < 3; i++) {
temp = data_to receive[i] & OxFF;
FPGA_IPM open(2,0,0,0);
FPGA_IPM write(2,1,&temp);
FPGA_IPM close(2);
HAL Delay(2000);
temp = data_to_receive[i] >> 8;
FPGA_IPM open(2,0,0,0);
FPGA_IPM_write(2,1,&temp);
FPGA_IPM close(2);
HAL_Delay (2000) ;

aw »
o
SEcube™ Open Source Hardware and Software Security Oriented Platform www.secube.eu

	Work presentation
	Overview
	System Architecture and Behavior
	Design overview
	LED-BLINKER Core
	Quad-SPI Core
	Configuration
	Send
	Receive

	Application Program Interface
	High-level driver
	Concurrency issues

	User Manual
	Core installation
	A first project: communicating with Arduino
	Hardware resources
	Software resources
	Arduino setup
	Connecting the two devices together
	Testing Quad-SPI - Send
	Testing Quad-SPI - Receive

	Appendix
	SEcube™ - Send
	SEcube™ - Receive

