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Abstract: Analytical security of cryptographic protocols does not immediately translate to operational security due to
incorrect implementation and attacks targeting the execution environment. Code verification and hardware-
based trusted execution solutions exist, however these leave it up to the implementer to assemble the complete
solution, and imposing a complete re-think of the hardware platforms and software development process.
We rather aim for a comprehensive solution for secure cryptographic protocol execution, based on runtime
verification and stock hardware security modules that can be deployed on existing platforms and protocol
implementations. A study using a popular web browser shows promising results with respect to practicality.

1 INTRODUCTION

It is standard cryptographic practice to establish
provable security guarantees in a suitable theoreti-
cal model, abstracting from implementation details.
However, security of any cryptographic system needs
to be holistic: over and above being theoretically se-
cure and implemented in a secure way, the opera-
tion of a protocol also needs to be secured. While
there exists a lot of research on the theory and general
implementation aspect of cryptographic systems, its
longterm operation security, albeit heavily studied, is
not so well established.

Evidence for undesirable consequences stemming
from this state of affairs is unfortunately way too
frequent, with several high profile incidents making
the information security news1 in recent years. In-
secure execution spans improper implementation re-
lated to specific protocol issues to more generic in-
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secure programming practices. While the notorious
Heartbleed OpenSSL vulnerability, for example, was
caused by a memory corruption bug in its C source
code, OpenSSL’s timing attacks on the underpin-
ning ciphers are examples of how design security can
be broken in implementation. Similarly, Bluetooth
Smart’s attack was related to complexities with get-
ting elliptic curve cryptography secure implementa-
tion right. Even once programming hurdles are ad-
dressed, issues arising at the platform level are a stark
reminder that secure execution of cryptographic pro-
tocols is a hard problem. Insufficient physical ran-
domness employed by certificate generation is em-
phasized when large-scale generation for millions of
IoT devices is carried out. Operating system features
can be misused by malware campaigns, e.g. TrickBot,
to inject code into web browsers and steal all their
cryptographic secrets. Even when these attack vec-
tors are closed down, secure protocol execution can
still be undermined by hardware side-channels, with
Meltdown and Spectre shaking up the systems secu-
rity landscape in the last two years.

In this paper we propose a comprehensive solu-
tion based on runtime verification (RV) at different
levels of the implementation: from the low-level bugs
and attacks, to data leaks, up to implementation is-
sues at the protocol level. The end result is a Trusted
Execution Environment (TEE) that is able to iso-
late security-critical code from potentially malware-
compromised, untrusted, code. We propose that as
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an alternative to switching to specialized TEE hard-
ware, the same secure execution environment can be
provided by the use of hardware security modules
(HSM), that extend existing stock hardware. RV’s
role is two-fold: It firstly fulfills the role of a se-
cure monitor that scrutinizes data flows crossing trust
boundaries in the TEE. Secondly, it provides the all-
important runtime service of verifying correct proto-
col implementation, ensuring that design-level secu-
rity properties are not broken. Overall we make the
following contributions:

• We show how RV in conjunction with HSM can
be used to securely execute cryptographic proto-
cols, both in terms of correct implementation as
well as resilience to malware infection. Most im-
portantly our approach only requires extending,
rather than replacing, existing stock hardware.

• We demonstrate the feasibility of our approach on
real-world web browser code, both in terms of
monitoring the correct execution of a third party
ECDHE protocol implementation, as well as prac-
tical execution overheads.

This paper is organized as follows: Section 2
presents existing RV and hardware-based methods
to complement models for theoretical protocol secu-
rity, while section 3 describes our comprehensive ap-
proach for protocol operational security. Section 4
presents preliminary results obtained from a feasibil-
ity study on the Firefox web browser. Section 5 con-
cludes by presenting a way forward as guided by this
initial exploration.

2 BACKGROUND AND CONTEXT

Cryptographic protocols are designed to withstand a
broad range of adversarial strategies. Standard prac-
tice is to rely on formal security models, defined
in a dedicated way for a specific cryptographic task
at hand (e.g., public-key encryption, pseudo-random
generation, signing, 2-party key establishment, . . . ),
and succinct definitions are given making explicit the
exact scenario in which a security proof (or reduction)
is meaningful. In the case of key establishment, sig-
nificant work has been done for over twenty years in
the direction of dedicated security models (see Man-
ulis (Manulis, 2007) for a comprehensive overview).

Subsequent work has focused on specific sce-
narios (e.g., attribute based, see (Steinwandt and
Corona, 2010)) or advanced security goals (e.g. con-
sidering malicious insiders (Bohli et al., 2007), aim-
ing at strong security (Vasco et al., 2018), pre-
venting so-called key compromise impersonation re-

silience (Gorantla et al., 2011), etc.). Many of the
attack strategies considered in the latter may actually
be deployed on the implementation at runtime.

While having formal models to prove security pro-
tocols safe is a crucial first step, there are several
things which may still go wrong in the implemen-
tation at runtime: To start with, the implementation
might not be faithful to the proven design. Secondly,
the implementation involves details which go beyond
the design — these may all pose problems at run-
time, ranging from low-level hardware issues, to side-
channel attack vulnerabilities, to high-level logical
implementation bugs.

2.1 Runtime Verification

Runtime verification (RV) (Leucker and Schallhart,
2009; Colin and Mariani, 2004) involves the obser-
vation of a software system — usually through some
form of instrumentation — to assert whether the spec-
ification is being adhered to. There are several levels
at which this can be done: from the hardware level
to the highest-level logic, from module-level speci-
fications to system-wide properties, and from point
assertions to temporal properties. In all cases, the ad-
vantage of applying RV techniques is twofold: On the
one hand, monitors are typically automatically syn-
thesized from formal notation to reduce the possibility
of introducing bugs, and on the other hand, monitor-
ing concerns are kept separate (at least on a logical
level) from the observed system.

The novelty of this paper complements existing
work in applying RV to the security domain, specif-
ically by providing a comprehensive solution for
implementation security of cryptographic protocols,
comprising: i) verification of correct protocol imple-
mentation; and ii) an RV-enabled Trusted Execution
Environment (TEE) requiring minimal hardware. In
what follows we loosely classify the RV works on
security protocols (Bauer and Jürjens, 2010; Zhang
et al., 2016; Selyunin et al., 2017; Shi et al., 2018)
within various ‘levels’.
Low level. At a low level, RV can be used to check
software elements which are not specific only to pro-
tocol implementations. Rather, such checks would
be useful in the context of any application where se-
curity is paramount. For example, Signoles et al.
(Signoles et al., 2017) provide a platform for C pro-
grams, Frama-C, which can automatically check for
a wide range of undefined behaviours such as arith-
metic overflows, undefined downcasts, and invalid
pointer references. However, this does not mean that
the platform cannot also be used as a platform for
checking higher level properties mentioned next.



High level. At the highest level of abstraction, a num-
ber of approaches (Bauer and Jürjens, 2010; Zhang
et al., 2016; Selyunin et al., 2017; Shi et al., 2018)
check properties directly derived from the protocol
design (which would have been checked through the
security model). This approach ensures that even
though the protocol would have been theoretically
verified, the implementation does not diverge from
the intended behaviour due to bugs or attacks.

An example of a temporal property in this cate-
gory taken from TLS protocol verification (Bauer and
Jürjens, 2010) is before any data is sent by the client,
the server hash is verified to match the client’s ver-
sion. This can be expressed in several formalisms.
The one chosen in this case is LTL (Pnueli, 1977),
which is a commonly used specification language in
the RV community.

A second example (from (Zhang et al., 2016)) is
non-temporal but instead focuses on ensuring data
does not leak to unintended recipients: If the oper-
ation is of type “Send”, then the message receiver ID
must be in the set of approved receiver IDs. In this
case the property is expressed in an established RV
framework called Copilot comprising a stream-based
dataflow language.

Other specification formalisms used are timed reg-
ular expressions (Selyunin et al., 2017) for deal-
ing with realtime considerations, state machines (Shi
et al., 2018) when modelling of temporal ordering of
events suffices, and signal temporal logic when deal-
ing with signals (Selyunin et al., 2017).
In between. An alternative which seems to be lack-
ing is to operate at the medium level of abstraction
where the monitoring is aimed specifically to protect
the security protocol from targeted attacks. While the
consequence of such attacks might lead to the viola-
tion of high-level properties of the protocol, if well
planned, their execution might go unnoticed. At this
level, Frama-C has been used to build a library called
Secure Flow (Barany and Signoles, 2017) to protect
against control-flow based timing attacks by monitor-
ing information flow labels for all values of interest.

2.2 Trusted Execution Environments

Besides typical RV use as outlined above (corre-
sponding to the high level concerns outlined above),
we propose leveraging RV for the provision of a
trusted execution environment (TEE) to cover the
other two levels. The provision of a TEE is the ul-
timate objective whenever executing security-critical
tasks (Sabt et al., 2015), such as cryptographic
protocol steps. Trusted computing finds its origin
in trusted platform modules (TPM) that comprise

tamper-evident hardware modules (Anderson et al.,
2006). However TPM constitute just one component
of a complete TEE solution as depicted in Figure 1. In
fact, the cornerstone of TEE lies in the isolated exe-
cution of critical code segments in a way that they be-
come unreachable by malware infections of the non-
trusted operating system and application code.

TPM are entrusted with booting an operating sys-
tem (OS) environment that is segmented in a non-
trusted and trusted domains respectively, ensuring the
integrity of the boot process and at the same time
protecting the cryptographic keys upon which all in-
tegrity guarantees rely on. The non-trusted domain
corresponds to a typical OS that fundamentally pro-
vides security through CPU ring privileges. However
the presence of software and hardware bugs along
with inherently insecure OS features render malware
infections possible at both the user and kernel lev-
els. The crucial role of TEE comes into play when
despite an eventual infection, malware is not able to
interfere with security-critical code executing inside
the trusted domain. Complete isolation is key, en-
compassing CPU, physical memory, secondary stor-
age and even expansion buses. Code provisioning
to the trusted domain as well as data flows between
the two domains must be fully controlled in order to
fend off malware propagation through trojan updates
or software vulnerability exploits. These two require-
ments can be satisfied through TPM employment and
a secure monitor that inspects all data flows crossing
the trust domain boundary.

A number of TEE platforms have already reached
industry level maturity. Intel’s SGX and AMD’s SVM
technologies (Pirker et al., 2010) are primary exam-
ples. These constitute hardware extensions allowing
an operating system to fully suspend itself, including
interrupt handlers and all the code executing on other
cores, in order to execute the trusted domain code.
Another wide-spread example is ARM’s TrustZone
(Winter, 2008) that provides a TEE for mobile device
platforms. TrustZone implements the trusted domain
as a special secure CPU mode, and which when tran-
sited from normal mode is completely hidden from
the untrusted operating system, therefore allowing
particular security functions and cryptographic keys
to only be accessible when in secure mode. The An-
droid keystore (Cooijmans et al., 2014) is the most
common functionality that makes use of this mode.
Several other ideas also originate from academia,
such as the suggestion to leverage existing hardware
virtualization extensions to implement TEE without
having to resort to further specialized hardware (Mc-
Cune et al., 2010).

The common denominator with all existing TEE



Figure 1: Components of a trusted execution environment (TEE).

platforms is the need for cryptographic protocol code
to execute on special hardware. In contrast, we pro-
pose to achieve a similar level of assurance by com-
bining RV with any hardware security module of
choice, whether a high-speed bus adapter, or a micro-
controller hosted on commodity USB stick, or per-
haps even a smart card. The net benefit is to have
such hardware modules extend, rather than replace,
existing hardware. In the case of the latter two it is
simply a question of ‘plug-and-play’.

3 AN RV-CENTRIC TEE

Figure 2 shows a proposed RV-centric TEE for se-
cure protocol execution. This setup requires no spe-
cial hardware or OS modifications, mitigates threats
related to hardware issues, including side channel at-
tacks on ciphers, while keeping runtime overheads to
a minimum. The primary components of this design
are two RV monitors executing within the untrusted
domain and a hardware security module (HSM) pro-
viding the trusted domain of the TEE. The chosen
example HSM is a USB stick, comprising a micro-
controller (MCU), a crypto co-processor providing
h/w cipher acceleration and true random number gen-
eration (TRNG), as well as flash memory to store long

term keys. In this manner, cryptographic primitive
and key management code are kept out of reach of
malware that can potentially infect the OS and appli-
cations inside the untrusted domain. The co-processor
in turn can be chosen to be one that has got exten-
sive side-channel security analysis, thus mitigating
the remaining low-level hardware-related threats (e.g.
(Bollo et al., 2017)). The Crypto OS is executed by
the MCU, exposing communication and access con-
trol interfaces to be utilized for HSM session nego-
tiation by the protocol executing inside the untrusted
domain, after which a cryptographic service interface
becomes available (e.g. PKCS#11). In a typical TEE
fashion cryptographic keys never leave the HSM. The
proposed setup forgoes dealing with the verification
of runtime provisioned code since the cryptographic
services offered by the HSM are expected to remain
fixed for long periods.

The RV monitors complete the TEE. They verify
correct implementation of protocol steps and inspect
all interactions with the hardware module, both of
which happen through the network and external bus
OS drivers respectively. Verifying protocol correct-
ness leverages the high-level flavors of RV, check-
ing that the network exchanges follow the protocol-
defined sequence and that the correct decisions are
taken following protocol verification steps (e.g. dig-



Figure 2: RV-centric comprehensive security for cryptographic protocol implementations (USB stick example).

ital certificate verifications). Inspecting interactions
with the HSM, on the other hand, requires a low-level
approach similar to the Frama-C/SecureFlow plug-in.
In both cases the monitors are proposed to operate at
the binary (compiled code) level. The binary level
provides opportunities to secure third-party protocol
implementations, as well as optimized instrumenta-
tion applied directly at the machine instructions level.
Overall, binary instrumentation is a widely-adopted
technique in the domain of software security, includ-
ing the availability of widely used frameworks (e.g.
Frida2) that simplify tool development. The higher-
level RV monitor is tasked with monitoring protocol
steps and as such instrumentation based on library
function hooking suffices. This kind of instrumenta-
tion is possible to deploy with minimal overheads.

In contrast the lower-level RV monitor has to rely
on monitoring information flows, specifically, un-
trusted flows (Schwartz et al., 2010). The main limita-
tion is presented by impractical overheads (Jee et al.,
2012). Our proposed solution concerns inferring (as
opposed to tracking) taint (Sekar, 2009) — taking
a black-box approach to taint flow tracking, trading
off between accuracy and efficiency. This method
only tracks data flows at sources/sinks and then ap-
plies approximate matching to decide whether tainted
data has propagated all the way in-between. With

2https://www.frida.re/

slowdowns averaging only 0.035× for fully-fledged
web applications, this approach seems promising. In
fact we propose that this approach requires the same
library function hooking type of instrumentation as
with the higher-level RV monitor. Crypto OS calls
may be considered both taint sources and sinks. In
the case of data flowing into Crypto OS call argu-
ments originating from suspicious sites, e.g. network
input, interprocess communication (IPC) or dynam-
ically generated code, the Crypto OS calls present
the sinks. All these scenarios are candidates of mali-
cious interactions with the HSM. In the reverse direc-
tion, whenever data flows resulting from Crypto OS
call execution and that end up at the same previously
suspicious sites, the calls present the tainted sources
while the suspicious sites present the sinks. In this
case these are scenarios of malicious interactions tar-
geting leaks of cryptographic keys/secrets, timing in-
formation or outright plaintext data leaks. Whichever
the direction of the tainted flows, the same approxi-
mate matching operators can be applied between the
arguments/return values of the sources/sinks.

A nonce-based remote attestation protocol, e.g.
(Stumpf et al., 2006), can optionally close the loop
of trust. Executed by the Crypto OS its purpose is
to ascertain the integrity of the RV monitors in cases
where they are targeted by advanced malware infec-
tions. In the proposed setup the HSM performs the

https://www.frida.re/


tasks intended to be executed by a trusted platform
module (TPM) in such protocols.

4 FEASIBILITY STUDY

To test the feasibility of our approach, both in
terms of real-world codebase readiness and practical
overheads, we choose a key agreement protocol —
ECDHE (Miller, 1985) — and apply our approach to
it. Despite having its design proven secure from an
analytical point of view, its security in practice can
be compromised if not executed with all required pre-
cautions.

Three properties for secure ECDHE implementa-
tion are:

P1 Digital certificate verification in order to authen-
ticate public keys sent by peers: If wrong certifi-
cates are sent, or else the correct ones fail verifi-
cation when using a certificate chain that ends at
a root certificate authority, the protocol should be
aborted;

P2 Both session public keys are regenerated per ses-
sion in the ephemeral version of the protocol and
as such, both peers need to validate the remote
peer’s public key on each exchange3 (unless the
session is aborted);

P3 Once the master secret in TLS, has been estab-
lished, the private keys should be scrubbed from
memory in order to limit the impact of memory
leak attacks such as Heartbleed, irrespective of
whether the session is aborted.

FireFox and NSS We chose Firefox’s Linux imple-
mentation of ECDHE for our case study, mainly since
it makes use of the open-source and widely adopted
Network Secure Service library4 (NSS). It supports
TLS1.2 and 3, among other standards, as well as be-
ing cross-platform by sitting on top of the Netscape
Portable Runtime (NSPR).

4.1 Applying RV to the Context

LARVA (Colombo et al., 2009) has been available for
a decade with numerous applications in various areas
(Colombo et al., 2016). The advantage of LARVA is
that being automata-based and having Java-like syn-
tax, it offers a gentle learning curve. Furthermore, it

3see Section 5.2.3 in ftp://ftp.iks-jena.de/mitarb/lutz/
standards/ansi/X9/x963-7-5-98.pdf

4https://dxr.mozilla.org/mozilla-central/source/security/
nss/lib

has a number of features which came in handy when
applying it for protocol verification.
Basic sequence of events. At its simplest, a protocol
involves a number of events which should follow a
particular order. Each event corresponds to a hooked
library function call (note that libfreeblpriv has to
be re-compiled with debug symbols). In Listing 1,
the first two transitions deal with the start of a new
session (sslImport and prConnect).
Conditions and actions. The occurrence of an event
is not always enough to decide whether it is a valid
step of the protocol or not. LARVA supports condi-
tions and actions on transitions to perform checks on
parameters, return values, etc. In the example (see
lines 5–6 in Listing 1), this was necessary to ensure
that the call to destroy the private key is a sub-call of
close.

1 Transitions {
2 start −> newsession [sslimport]
3 newsession −> server_connect [prconnect]
4 server_connect −> failed_cert_auth [sslauthcertcompl]
5 failed_cert_auth −> close [prclose\\mcParent=mc;]
6 close −> certerr_ok [destroypk\mc.hasParent(mcParent)]
7

8 failed_cert_auth −> certerr_bad [eot]
9 close −> certerr_bad [eot]

10 }

Listing 1: Certificate error property (P1).

Sub-patterns. Following software engineering prin-
ciples of modularity, LARVA allows matching to be
split into sub-automata which can communicate their
conclusions to each other and their parent. The sec-
ond property we are checking needs to ensure that
whenever a session fails for some reason, it is aborted
properly. Listing 2 shows a property describing a ses-
sion ‘abort’ pattern whereupon matching, the success
is communicated (using abort.send on line 10) to
other automata for which an abort is relevant.

1 Property abort {
2 States {
3 Accepting { abort }
4 Normal { close }
5 Starting { start }
6 }
7 Transitions {
8 start −> close [prclose\\mcParent=mc;]
9 close −> abort [destroypk\mc.hasParent(mcParent)

10 \abort.send();]
11 }
12 }

Listing 2: Abort detection property (contributes to P2).

ftp://ftp.iks-jena.de/mitarb/lutz/standards/ansi/X9/x963-7-5-98.pdf
ftp://ftp.iks-jena.de/mitarb/lutz/standards/ansi/X9/x963-7-5-98.pdf
https://dxr.mozilla.org/mozilla-central/source/security/nss/lib
https://dxr.mozilla.org/mozilla-central/source/security/nss/lib
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Figure 3: Finite state automata of properties; dashed transi-
tions represent the end-of-trace event.

Figure 3 shows the second and third properties
in their diagrammatic format. For clarity, we have
removed some details which are not needed for the
reader to understand the general idea5.
Hooked functions. The complete list of hooked func-
tions feature in the list of LARVA events shown in
Listing 3. These events are in turn what trigger the
monitoring automata to transition from one state to
another.

4.2 Firefox Case Study

Comprehension of Firefox’s usage of NSS yielded an
aggressively optimized implementation, with two de-
sign strategies being of particular relevance to our ex-
periments. These are: (i) Interleaved TLS sessions
executed on the same thread whenever accessing a
specific URL over HTTPS; and which in turn are (ii)
Executed concurrently to certificate verification on a
separate thread. The main implication here is the need
to separate individual TLS sessions in order to exe-

5For complete LARVA properties and traces visit:
http://github.com/ccol002/rv-crypto

1 Events {
2 sslimport() = {MethodCall mc.call(String n,∗,∗)} filter

{n.equals("SSL_ImportFD")}
3 prconnect() = {MethodCall mc.call(String n,∗,∗)} filter

{n.equals("PR_Connect")}
4 sslauthcertcompl() = {MethodCall mc.call(String n,∗,

Map params)} filter
5 {n.equals("SSL_AuthCertificateComplete") &&
6 !((String)params.get("err")).equals("0x0")}
7 destroypk(mc) = {MethodCall mc.call(String n,∗,∗)}

filter {n.equals("SECKEY_DestroyPrivateKey")}
8 prclose(mc) = {MethodCall mc.call(String n,∗,∗)}

filter {n.equals("PR_Close")}
9 eot() = {EndOfTrace eot.call()}

10 createpk(mc) = {MethodCall mc.call(String n,∗,∗)}
filter {n.equals("SECKEY_CreateECPrivateKey")}

11 validatepk(mc,params) = {MethodCall mc.call(String n
,∗, Map params)} filter

12 {n.equals("EC_ValidatePublicKey")}
13 deriveKDF(mc) = {MethodCall mc.call(String n,∗,∗)}

filter {n.equals("PK11_PubDeriveWithKDF")}
14 step(ret) = {step.receive(Object ret)}
15 abort() = {abort.receive()}
16 destroypke5() = {MethodCall mc.call(String n,∗, Map

params)} filter
17 {n.equals("SECKEY_DestroyPrivateKey") &&
18 ((String)params.get("privk")).contains("e5 e5 e5

e5")}
19 }

Listing 3: LARVA events defined over the hooked functions.

cute the RV monitors on separate sessions. This task
is left to an individual TLS session filtering procedure
described by Algorithm 1. Its first step is to identify
the beginning and end of each TLS session. This is
made possible through NSPR’s file descriptors (fd),
by pairing calls to SSL_ImportFD() and PR_Close()
for the same fd. This pair and all intervening entries
are extracted into their own slice, non-destructively
(line 2).

Each slice is iterated multiple times (lines 6-
20). During the first iteration (lines 8-9) all pend-
ing function calls, and all their sub-calls, involv-
ing the same fd are pulled into a newly created
TLS session trace by Match_ArgsRetVal. Simi-
larly all entries, and sub-calls, with a correspond-
ing NSS context (cx) argument (referred to as cx f d)
are also included, since NSS’s cx is pinned to
NSPR’s fd. Subsequent iterations also pull in
calls that are not fd-based, and which do not hap-
pen to be sub-calls of the already included func-
tions. In order to do so, a heuristic is employed
based on SSL_AuthCertificateComplete() and
PR_Close() and their sub-calls. These sub-calls ob-
viously belong to the same thread of execution of
their callers, and comprise various PKCS#11 key

http://github.com/ccol002/rv-crypto


Algorithm 1: Individual TLS session filter-
ing for Firefox/NSS

Input: Func_Call in_full_trace[];
Output: Func_Call out_indiv_sessions[][];

1 while forever do
2 (Func_Call curr_slice[], int fd)←

GetNextSlice(in_full_trace,
‘SSL_ImportFD’, ‘PR_Close’);

3 int i← 1;
4 Func_Call prev_session[], curr_session[]← /0;
5 Address keys[]← /0;
6 repeat
7 if i=1 then
8 curr_session←

Match_ArgsRetVal(curr_slice, [fd,
cx f d]);

9 i++;
10 else
11 prev_session← curr_session;
12 if i=2 then
13 keys←

GetKeyAddressesSubCalls(
14 curr_session,

‘SSL_AuthCertificateComplete’,
‘PR_Close’);

15 i++;
16 else
17 keys←

GetAllKeyAddresses(curr_session);

18 end
19 curr_session←

Match_ArgsRetVal(curr_slice, [fd,
cx f d , keys]);

20 end
21 until curr_session = prev_session;
22 Enqueue (out_indiv_sessions, curr_session);
23 end

derivation/encryption functions. Once these sub-
calls are included within the current trace as estab-
lished by GetKeyAddressesSubCalls (lines 13-14
followed by 18), what remains missing are all other
PKCS#11 calls that do not happen to be in these
sub-calls, along with all other required hooked func-
tions. Multiple iterations have to be executed in or-
der to do so, adding function calls for every match-
ing key-related argument or return value as estab-
lished by GetKeyAddressesSubCalls (lines 16 fol-
lowed by 18). All these arguments and return val-
ues are addresses of key storage locations in mem-
ory. Iterations are executed until no further en-
tries are made (line 20), with the completed individ-
ual session passed on to the RV monitor (line 21)
as an output stream. This is the heuristic part of
the algorithm, with the underlying assumption be-

ing that concurrent TLS sessions do not make use
of the same memory locations to store keys, as oth-
erwise interference between threads ensues. A sec-
ond underpinning assumption is that each individ-
ual session either starts a key derivation sub-call se-
quence inside SSL_AuthCertificateComplete(),
or calls PK11_Encrypt() on session completion (by
PR_Close()). The former occurs whenever the
certificate verification thread loses the race with
the ECDHE protocol thread, while the latter hap-
pens whenever Firefox knows it is sending the final
GET/POST HTTP request and closes its end of the
TCP connection. This approximate solution trades
off precision for efficiency, as compared to tracing
all threads at the instruction level, or having to up-
date Firefox’s source-code to accommodate individ-
ual TLS session tracing accordingly. This heuristic
fails whenever Algorithm 1 exits after the second it-
eration, however it may still be effective in case all
required hooked function calls happen to be already
sub-calls of the included function calls. Ultimately
the non-deterministic behavior resulting from the op-
timized multi-threaded implementation is a factor.

Experiments setup Two experiments were set up.
The first experiment, Bad_SSL, is intended to demon-
strate the first RV property concerning certificate ver-
ification errors. It makes use of 11 sites, sub-domains
of badssl.com, with known certificate issues. The sec-
ond experiment, Top_100, based on Alexa top 100
sites (as of 05/06/2019), sets out to demonstrate prac-
ticality of the binary level instrumentation. It also
sheds light on Firefox’s runtime behavior, verifying
its expected correct execution with respect to EC pub-
lic key validation and private key scrubbing, through
the remaining RV properties. Furthermore, sessions
that do not match any of these properties can also
provide insight into full-session: resumption ratio, as
well as Algorithm 1’s heuristic accuracy. Each site
has its root URL accessed 10 times in a row, with
all sessions automated through Selenium (Python)
v3.141.0/geckodriver v0.24.0 on an Intel i7 3.6GHz
x4 CPU/16GB RAM machine. Function hooking im-
plementation uses Frida v12.4.8.

Results Table 1 shows that in Bad_SSL all sessions
are eventually aborted on certificate verification fail-
ure, as evidenced by property 1a matches6 and no
matches for 2a&2b. Property 3a matches are a conse-
quence of ECDHE steps being executed concurrently

6For each property, “a” refers to the property being sat-
isfied, i.e., reaching an accepting state, while “b” refers to
the property being violated, i.e., reaching a bad state.



Table 1: RV property matches.

Dataset TLS sessions Properties
1a 1b 2a 2b 3a 3b

Bad_SSL 11 11 0 0 0 11 0
Top_100 3,366 0 0 1,342 0 1,405 6

Table 2: Overheads measured for Top_100.

Configuration Pages Page load time (ms)
mean std. dev.

No RV 1,000 6,918.37 24,870.86
With RV 1,000 7,282.35 27,328.9

Overhead 5.26%
Wilcoxon signed-rank test p=0.281

for certificate verification inside a separate thread. As
for Top_100 the 10 access requests per URL gener-
ate a total of 3,366 sessions. This is due to the fact
that each page may in turn initiate further TLS ses-
sions due to ancillary HTTP requests being generated
by the initial HTML. None of these sites generated
a certificate error, with not a single session match-
ing 1a&1b, which is expected by frequently accessed
sites. The non-matching of property 2b and a very low
number of property 3b matches, indicate the expected
correct behavior with respect to EC public key vali-
dation and private key scrubbing respectively. The 6
matches for the latter were traced to odd instances of
non-returning SECKEY_DestroyPrivateKey() calls,
indicating some implementation quirk occurring dur-
ing automated browser sessions. In fact this scenario
could not be reproduced with manual browser ses-
sions.

The numbers of combined matches for proper-
ties 2a&2b and 3a&3b matches, each being less than
3,366, requires some context. Firstly, remember that
TLS sessions may make use of session resumption
rather than go through the full handshake. From the
acquired traces we found 1,951 such sessions, lower-
ing down the expected combined total for each prop-
erty to 1,415. The pending discrepancy for 3a&3b
(totaling 1,411) is accounted for by 4 sessions that get
aborted for some reason even before ECDHE and cer-
tification verification threads even execute. The gap
for 2a&2b is accounted for additionally by 69 ses-
sions that generated no alerts on exiting after iteration
2 of Algorithm 1, and without managing to include
the required calls into the trace by that time. This
accounts for an effective accuracy rate of 0.9795 for
the underpinning heuristic. This is quite high, espe-
cially when considering the attained instrumentation
efficiency. As shown in Table 2, when comparing
the Top_100 sessions executed with/out RV, the mean
overhead is just 5.26%, with the pair-wise differences

not even surpassing the threshold of statistical signifi-
cance. A Wilcoxon signed-rank test returns a p-value
of 0.281, indicating that external factors, e.g. network
latency, server load and browser CPU contention, may
be having a larger impact than instrumentation. These
factors as well as the browser cache effect and the in-
herent difference between pages (e.g., Youtube takes
longer to load than Google) explain the large standard
deviation recordings in both setups.

5 CONCLUSIONS & FUTURE
WORK

An RV-centric TEE has been proposed, targeting var-
ious points of a security protocol implementation;
promising to improve the robustness of the implemen-
tation with minimal additional hardware and/or run-
time overheads. A feasibility study of the approach
has been carried out on a real-world third party code-
base, which implements a state-of-the-practice key
establishment protocol.

While the study shows promise, we note that:

• Program comprehension is required, both for set-
ting up function hooks as well as to enable indi-
vidual TLS session monitoring. Moreover, real-
world code tends to be written in a manner to fa-
vor efficient execution rather than monitor-ability,
hence the need for an algorithm to filter individual
sessions in our case study. However, in case RV
is used on one’s own code-base, support for RV
could be thought out from inception, with these
issues being somewhat alleviated.

• Adding RV to a system naturally requires trust of
the introduced code. There are however several
ways in which concerns in this regard can be ad-
dressed: (i) the RV code is generated automati-
cally from a finite state automaton, thus reduc-



ing the possibilities of bugs; (ii) more importantly,
only the hooking code interacts directly with the
monitored code. This separation ensures that RV
interferes as little as possible with the monitored
system.

Future work includes exploring various options
for HSM configurations, taint inference algorithms,
and remote attestation. Results in these respects will
provide the full picture for the comprehensive solu-
tion for securely executing cryptographic protocols
just proposed.
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